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A general notion of bootstrapped empirical estimators, of the semi-Markov kernels and
of the conditional transition probabilities for semi-Markov processes with countable state
space, constructed by exchangeably weighting sample, is introduced. Asymptotic properties
of these generalized bootstrapped empirical distributions are obtained by means of the
martingale approach.
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r é s u m é

Nous introduisons la notion du bootstrap échangeable des estimateurs empiriques des
noyaux semi-markoviens et des probabilités de transition conditionnelles pour les proces-
sus semi-markoviens à espace d’état dénombrable. Nous obtenons nos résultats asympto-
tiques en utilisant les approches martingales.

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction and notation

Semi-Markov processes are an extension of jump Markov processes and renewal processes. More specifically, they allow
the use of any distribution for the sojourn times instead of the exponential (geometric) distributions in the Markov pro-
cesses (chains) case. This feature has led to successful applications in survival analysis [1], reliability [16], queueing theory,
finance and insurance [14]. The theory of the semi-Markov processes is given by [20,21]. For recent references in this area
along with statistical applications, see, e.g., [17] and [3]. Nonparametric estimation of semi-Markov kernel and conditional
transition probability has been the subject of intense investigation for many years, leading to the development of a large
variety of methods, see, e.g., [16] and [3] and references therein. Note that the limiting distributions of these estimators,
or their functionals, are rather complicated, which does not permit explicit computation in practice. To overcome that diffi-
culty, we will propose a general bootstrap of empirical semi-Markov kernels and of the conditional transition probabilities
and study some of its asymptotic properties by means of martingale techniques. The interest in considering general boot-
strap instead of particular cases lies in the fact that we need, in general, a more flexible modeling to handle the problems
in practice. In a variety of statistical problems, bootstrap provides a simple method for circumventing technical difficulties
due to intractable distribution theory and has become a powerful tool for setting confidence intervals and critical values
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of tests for composite hypotheses. A substantial body of literature, reviewed in [4], gives conditions for the bootstrap to be
satisfied in order to provide desirable distributional approximations. In [7], the performance of different kinds of bootstrap
procedures is investigated through asymptotic results and small sample simulation studies. Note that bootstrapping, accord-
ing to Efron’s original formulation (see [13]), presents some drawbacks. Namely, some observations may be used more than
once, while others are not sampled at all. To overcome that problem, a more general formulation of bootstrap has been
introduced, weighted (or smooth) bootstrap, which has also been shown to be computationally more efficient in several ap-
plications. For a survey of further results on weighted bootstrap, the reader is referred to [2]. Another resampling scheme
was proposed in [22] and was extensively studied by [6], who suggested the name “weighted bootstrap”, e.g., Bayesian
bootstrap when the vector of weights (Wn1, . . . , Wnn) = (Dn1, . . . , Dnn), is equal in distribution to the vector of n spacings
of n − 1 ordered uniform (0,1) random variables, that is, (Dn1, . . . , Dnn) ∼ Dirichlet(n;1, . . . ,1). These resampling plans
lead to the interest of a unified approach, generically designated as general weighted resampling, was first proposed by
[18] and amongst others extended by [19]. To the best of our knowledge, general weighted resampling in the semi-Markov
setting was open, giving the main motivation to our paper. The results obtained in the present paper are useful in many
statistical problems, in the semi-Markov framework, as it is illustrated in [9] and [8]. We start by giving some notation
and definitions that are needed for the forthcoming section. All random processes are defined on a complete probability
space (Ω,F ,P). This is a technical requirement which allows the construction of the Gaussian processes in our theorems,
and is not restrictive, since one can expand the probability space to make it rich enough (see, e.g., Appendix 2 in [11],
[12] and [5, Lemma A1]). To define semi-Markov processes or equivalently Markov renewal processes, it is natural, first, to
define semi-Markov kernels (see, for example, [17] for a description in details). Consider an infinite countable set, say E ,
and an E-valued càdlàg time-homogeneous semi-Markov process {Zt : t � 0}, with an embedded Markov renewal process
{( Jk, Sk): k ∈ N}, where { Jk: k ∈ N} is the E-valued embedded Markov chain (EMC) of the successive visited states, and
0 = S0 � S1 � · · ·� Sk � Sk+1 � · · · are the jump times of the semi-Markov process {Zt : t � 0}. Define also Xk := Sk − Sk−1,
for k � 1, the sojourn times, and the process {N(t): t � 0}, which counts the number of jumps of {Zt : t � 0}, in the time
interval [0, t], by N(t) := sup{k � 0: Sk � t}. Let us also define {Ni(t): t � 0} as the number of visits of {Zt : t � 0} to state
i ∈ E up to time t , and {Nij(t): t � 0} the number of direct jumps of {Zt : t � 0} from state i to state j up to time t (see,
e.g., [17]). More precisely,

Ni(t) :=
N(t)∑
k=1

1{ Jk−1=i} and Nij(t) :=
N(t)∑
k=1

1{ Jk=i, Jk−1= j},

where 1A stands for the indicator function of the event A. Particularly, in the case where we consider the renewal process
{Si

k: k � 0}, i ∈ E , (eventually delayed, see, e.g., [17]) of successive times of visits to state i, then {Ni(t): t � 0} is the
counting process of renewals. Let μii be the mean recurrence time of {Si

k: k � 0}, i ∈ E , i.e., μii = E[Si
2 − Si

1], and let us
denote by:

ν = {νi: i ∈ E}
the stationary distribution of the embedded Markov chain { Jk: k � 0}. Let Q (t) = {Q ij(t), i, j ∈ E, t � 0}, be the semi-Markov
kernel, which is defined by:

Q ij(t) := P( Jk+1 = j, Xk+1 � t| Jk = i) = P (i, j)Fij(t), for t � 0, i, j ∈ E, (1.1)

where P (i, j) := P( Jk+1 = j| Jk = i), is the transition kernel of the EMC { Jk: k � 1}, and

Fij(t) := P(Xk+1 � t| Jk = i, Jk+1 = j), for t � 0, i, j ∈ E,

is the conditional distribution function of the sojourn times. Let us define also the distribution function Hi(t) := ∑
j∈E Q ij(t),

and its mean value mi , which is the mean sojourn time of {Zt : t � 0} in the state i ∈ E , i.e., mi := ∫ ∞
0 (1 − Hi(t))dt . The

mean sojourn time of the semi-Markov process {Zt : t � 0} is defined by:

m :=
∑
i∈E

νimi . (1.2)

In the sequel, we need to recall the following useful property:

μii = m/νi . (1.3)

Let us define the following observation in the time interval [0, t]:

Ht := {Zu,0 � u � t} =
{ { J0, X1, . . . , J N(t), Ut}, if N(t) > 0,

{ J0, Ut = t}, if N(t) = 0,

where Ut := t − SN(t) denotes the backward recurrence time. According to [16], we define the empirical estimator of the
semi-Markov kernel by:

Q̂ i j(x, t) :=
{

1
Ni(t)

∑N(t)
k=1 1{ Jk−1=i, Jk= j,Xk�x}, for 0 � x � t, i, j ∈ E,

(1.4)

0, whenever Ni(t) = 0,
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and the empirical estimator of the conditional transition distribution functions by:

F̂ i j(x, t) :=
{

1
Nij(t)

∑N(t)
k=1 1{ Jk−1=i, Jk= j,Xk�x}, for 0 � x � t, i, j ∈ E,

0, whenever Nij(t) = 0.
(1.5)

All the asymptotic results in this note require the following assumptions:

(i) The Markov chain { Jk: k � 0} is ergodic with stationary distribution ν;
(ii) The mean sojourn times {mi: i ∈ E} are finite;

(iii) The distribution functions of the sojourn times are not degenerate, i.e., not equal to δ0, that is, Dirac distributions
concentrated at 0.

Remark 1. The first and second assumptions ((i)–(ii)) are used in order to obtain the asymptotic result, since we are work-
ing on a single trajectory of the semi-Markov process {Zt : t � 0}. In particular, the stationarity of the semi-Markov process
{Zt : t � 0} is guaranteed by the assumption (ii). Finally, the assumption (iii) is used to avoid the explosion of the semi-
Markov process {Zt : t � 0}. However, the Dirac distributions concentrated at the point a > 0 are useful in order to introduce
fixed durations.

The functional central limit theorems for estimators given in (1.4) and (1.5) are established in [16]. Notice that, in the
aforementioned empirical estimators, the backward recurrence times are neglected. In fact, for the asymptotic properties,
i.e., as t tends to infinity, Ut adds no significant information. The bootstraps of {Q̂ i j(x, t): 0 � x � t, i, j ∈ E} and { F̂ i j(x, t):
0 � x � t, i, j ∈ E} are introduced in detail and their asymptotic properties are given in Section 2.

2. Main results

In this section, we shall establish the asymptotic properties of bootstrapping under quite general conditions in the frame-
work of semi-Markov processes. Let W ≡ (Wnj, j = 1, . . . ,n, n = 1,2 . . .) be a triangular array of random variables. This
array determines a weighted bootstrap of the empirical estimator of the semi-Markov kernel by:

Q W
ij (x, t) :=

{
1

Ni(t)

∑N(t)
k=1 W N(t)k1{ Jk−1=i, Jk= j,Xk�x}, for 0 � x � t, i, j ∈ E,

0, whenever Nij(t) = 0,
(2.1)

and the weighted bootstrap of the empirical estimator of the conditional transition distribution functions by:

F W
ij (x, t) :=

{
1

Nij(t)

∑N(t)
k=1 W N(t)k1{ Jk−1=i, Jk= j,Xk�x}, for 0 � x � t, i, j ∈ E,

0, whenever Nij(t) = 0.
(2.2)

The bootstrap weights Wni ’s are assumed to belong to the class of exchangeable bootstrap weights investigated in [19].
We shall assume the following conditions:

W.1 The vector Wn = (Wn1, . . . , Wnn)� is exchangeable for any n = 1,2, . . . , i.e., for any permutation π = (π1, . . . ,πn) of
(1, . . . ,n), the joint distribution of π(Wn) = (Wnπ1 , . . . , Wnπn )

� is the same as that of Wn;
W.2 Wni � 0 for all n, i and

∑n
i=1 Wni = n for all n;

W.3 lim supn→∞ ‖Wn1‖2,1 � C < ∞, where ‖Wn1‖2,1 := ∫ ∞
0

√
P(Wn1 > u)du;

W.4 limλ→∞ lim supn→∞ supt�λ t2
P(Wn1 > t) = 0;

W.5 (1/n)
∑n

i=1(Wni − 1)2 P−→ c2 > 0.

Efron’s nonparametric bootstrap corresponds to the choice Wn ∼ Mult(n;n−1, . . . ,n−1) for which conditions W.1–W.5 are
satisfied. In general, conditions W.3–W.5 are satisfied under some moment conditions on Wni , see [19, Lemma 3.1]. In ad-
dition to Efron’s nonparametric bootstrap, the sampling schemes that satisfy conditions W.1–W.5, include Bayesian bootstrap,
Multiplier bootstrap, Double bootstrap and Urn bootstrap. This list is sufficiently long to indicate that conditions W.1–W.5 are
not unduly restrictive. Notice that the value of c in W.5 is independent of the sample size and depends on the resampling
method, e.g., c = 1 for the nonparametric bootstrap and Bayesian bootstrap, whereas c = √

2 for the double bootstrap.
A more precise discussion of this general formulation of the bootstrap and further details can be found in [18], [19],
[23, §3.6.2, p. 353], [15, §10, p. 179], [10] and references therein. Throughout the paper, we assume that the bootstrap
weights Wni ’s are independent from the data {Zu: 0 � u � t}. For any fixed states i, j ∈ E and fixed x � 0, let us define the
random sequences {Y�: � � 1} and {Y ∗

� : �� 1}, respectively, by:

Y� = Y�(i, j, x) := 1{ J�−1=i, J�= j,X��x} − 1{ J�−1=i} Q ij(x),

Y ∗ = Y ∗(i, j, x) := W�nt��
(
1{ J =i, J = j,X �x} − 1{ J =i} Q̂ i j(x,nt)

)
,
� � �−1 � � �−1
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with �u� � u < �u� + 1 denoting the integer part of u, and for k � 1, define the following sums:

Sij
k (x) :=

k∑
�=1

Y�(i, j, x) and S∗i j
k (x) :=

k∑
�=1

Y ∗
� =

k∑
�=1

Y ∗
� (i, j, x). (2.3)

In the sequel, {W (t), t � 0} denotes the standard Brownian motion, that is, a centered Gaussian process with continuous
sample paths and covariance function E(W (s)W (t)) = min(s, t), for s, t � 0. The following weak convergence result is due
to [16]. For any fixed states i, j ∈ E and fixed x � 0, as n tends to infinity, we have:

n−1/2 Sij
�nt�(x)

d−→ σi j(x)W (t), (2.4)

with the arrow “
d−→” denoting the weak convergence of random element in the Skorohod space D[0,∞], provided that

σ 2
i j (x) > 0, where σ 2

i j (x) := νi Q i j(x)(1 − Q ij(x)). We are now in position to state our first result in the following theorem,
which gives the bootstrap version of (2.4).

Theorem 2.1. Let W be a triangular array of bootstrap weights satisfying assumptions W.1–W.5. For any fixed states i, j ∈ E and fixed
x � 0, the following weak convergence holds, as n → ∞,

n−1/2 S∗i j
�nt�(x)

d−→ (
1 + c2)1/2

σi j(x)W (t), for t > 0. (2.5)

Theorem 2.2. Let W be a triangular array of bootstrap weights satisfying assumptions W.1–W.5. For any fixed i, j ∈ E, and fixed x � 0,
we have the following weak convergence, as n → ∞,

n1/2(Q W
ij (x,nt) − Q̂ i j(x,nt)

) d−→ (
1 + c2)1/2

bij(x)W (t)/t, for t > 0, (2.6)

provided that b2
i j(x) > 0, where:

b2
i j(x) := μii Q i j(x)

(
1 − Q ij(x)

)
.

For any fixed states i, j ∈ E and fixed x � 0, let us define the random sequences {Y ′
�: �� 1} and {Y ∗′

� : �� 1}, respectively,
by:

Y ′
� = Y ′

�(i, j, x) := 1{ J�−1=i, J�= j,X��x} − 1{ J�−1=i} Fij(x),

Y ∗′
� = Y ∗′

� (i, j, x) := W�nt��
(
1{ J�−1=i, J�= j,X��x} − 1{ J�−1=i} F̂ i j(x,nt)

)
,

and for k � 1, define the following sums:

S ′ i j
k (x) :=

k∑
�=1

Y ′
� =

k∑
�=1

Y ′
�(i, j, x) and S∗′ i j

k (x) :=
k∑

�=1

Y ∗′
� =

k∑
�=1

Y ∗′
� (i, j, x).

The following result has already been derived by [16]. For any fixed states i, j ∈ E and fixed x � 0, the following weak
convergence holds, as n tends to infinity:

n−1/2 S ′ i j
�nt�(x)

d−→ σ ′
i j(x)W (t), (2.7)

provided that σ ′ 2
i j (x) > 0, where σ ′ 2

i j (x) := νi Q i j(x)(1 − Fij(x)). We state our result in the following theorem which gives the
bootstrap version of (2.7).

Theorem 2.3. Let W be a triangular array of bootstrap weights satisfying assumptions W.1–W.5. For any fixed states i, j ∈ E and fixed
x � 0, the following weak convergence holds, as n → ∞:

n−1/2 S∗′ i j
�nt�(x)

d−→ (
1 + c2)1/2

σ ′
i j(x)W (t), for t > 0. (2.8)

Theorem 2.4. Let W be a triangular array of bootstrap weights satisfying assumptions W.1–W.5. For any fixed i, j ∈ E, and fixed x � 0,
we have the following weak convergence, as n → ∞:

n1/2(F W
ij (x,nt) − F̂ i j(x,nt)

) d−→ (
1 + c2)1/2

ci j(x)W (t)/t, for t > 0, (2.9)

provided that c2
i j(x) > 0, where:

c2
i j(x) := μii

P (i, j)
Fij(x)

(
1 − Fij(x)

)
.
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