Algebraic Geometry

Cubic symmetroids and vector bundles on a quadric surface

CrossMark

Cubiques symétroïdes et fibrés vectoriels sur une surface quadrique

Sukmoon Huh ${ }^{1}$
Department of Mathematics, Sungkyunkwan University, 300 Cheoncheon-dong, Suwon 440-746, Republic of Korea

A R T I C L E I N F O

Article history:

Received 26 April 2013
Accepted after revision 23 July 2013
Available online 2 August 2013
Presented by Claire Voisin

Abstract

We investigate the jumping conics of stable vector bundles \mathcal{E} of rank 2 on a smooth quadric surface Q with the Chern classes $c_{1}=\mathcal{O}_{Q}(-1,-1)$ and $c_{2}=4$ with respect to the ample line bundle $\mathcal{O}_{Q}(1,1)$. As a consequence, we prove that the set of jumping conics $S(\mathcal{E})$ uniquely determines \mathcal{E} and that the moduli space of such bundles is rational. © 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. R É S U M É Nous étudions les coniques de saut des fibrés vectoriels stables \mathcal{E} de rang 2 sur une surface quadratique lisse Q de classes de Chern $c_{1}=\mathcal{O}_{Q}(-1,-1)$ et $c_{2}=4$ relativement au fibré en droites ample $\mathcal{O}_{Q}(1,1)$. Nous en déduisons que l'ensemble des coniques de saut $S(\mathcal{E})$ détermine \mathcal{E} de maniére unique et que l'espace de modules de ce type de fibrés est rationnel.

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Throughout the article, our base field is \mathbb{C}, the field of complex numbers.
Let Q be a smooth quadric in $\mathbb{P}_{3}=\mathbb{P}(V)$, where V is a 4 -dimensional vector space, and $\mathfrak{M}(k)$ be the moduli space of stable vector bundles of rank 2 on Q with the Chern classes $c_{1}=\mathcal{O}_{Q}(-1,-1)$ and $c_{2}=k$ with respect to the ample line bundle $\mathcal{L}=\mathcal{O}_{Q}(1,1) . \mathfrak{M}(k)$ forms an open Zariski subset of the projective variety $\overline{\mathfrak{M}}(k)$, whose points correspond to the semi-stable sheaves on Q with the same numerical invariants. The Zariski tangent space of $\mathfrak{M}(k)$ at \mathcal{E} is naturally isomorphic to $H^{1}(Q, \mathcal{E} n d(\mathcal{E}))$ [8] and so the dimension of $\mathfrak{M}(k)$ is equal to $h^{1}(Q, \mathcal{E} n d(\mathcal{E}))=4 k-5$, since \mathcal{E} is simple. In [6], we define the jumping conics of $\mathcal{E} \in \mathfrak{M}(k)$ as points in \mathbb{P}_{3}^{*} and prove that the set of jumping conic is a symmetric determinantal hypersurface of degree $k-1$ in \mathbb{P}_{3}^{*}. It enables us to consider a morphism:

$$
S: \mathfrak{M}(k) \rightarrow\left|\mathcal{O}_{\mathbb{P}_{3}^{*}}(k-1)\right| \simeq \mathbb{P}_{N}
$$

We conjecture in [6] that the general $\mathcal{E} \in \mathfrak{M}(k)$ is uniquely determined by $S(\mathcal{E})$ and prove that this map S is generically injective for $k \leqslant 3$.

In this article, we prove that the conjecture is true when $k=4$. For $\mathcal{E} \in \mathfrak{M}(4), S(\mathcal{E})$ is a cubic symmetroid surface, i.e. a symmetric determinantal cubic hypersurface in \mathbb{P}_{3}^{*}. In terms of short exact sequences that \mathcal{E} admits, we can obtain the relation between the singularity of $S(\mathcal{E})$ and the dimension of cohomology of the restriction of \mathcal{E} to its hyperplane section.

[^0]It turns out that $S(\mathcal{E})$ has exactly 4 singular points. It enables us to derive the rationality of $\mathfrak{M}(4)$, which was proven in a much more general setting in [2]. Lastly, we give a brief description of $S(\mathcal{E})$ for non-general bundles of $\mathfrak{M}(4)$. We will denote the dimension of the cohomology $H^{i}(X, \mathcal{F})$ for a coherent sheaf \mathcal{F} on X by $h^{i}(X, \mathcal{F})$, or simply by $h^{i}(\mathcal{F})$ if there is no confusion.

The work in this article has been done during my stay at the Politecnico di Torino and I deeply appreciate the hospitality and support of Prof. Malaspina. I am also deeply grateful to the anonymous referee for a number of corrections and suggestions.

2. Preliminaries

Let Q be a smooth quadric surface isomorphic to $\mathbb{P}\left(V_{1}\right) \times \mathbb{P}\left(V_{2}\right)$ for two 2-dimensional vector spaces V_{1} and V_{2}. Then Q is embedded into $\mathbb{P}_{3} \simeq \mathbb{P}(V)$ by the Segre map, where $V=V_{1} \otimes V_{2}$. Let us denote $f^{*} \mathcal{O}_{\mathbb{P}_{1}}(a) \otimes g^{*} \mathcal{O}_{\mathbb{P}_{1}}(b)$ by $\mathcal{O}_{Q}(a, b)$ and $\mathcal{E} \otimes \mathcal{O}_{Q}(a, b)$ by $\mathcal{E}(a, b)$ for coherent sheaves \mathcal{E} on Q, where f and g are the projections from Q to each factors. Then the canonical line bundle K_{Q} of Q is $\mathcal{O}_{Q}(-2,-2)$. As a direct consequence of the Kunneth formula, we have:

$$
H^{i}\left(Q, \mathcal{O}_{Q}(a, a+b)\right)= \begin{cases}0, & \text { if } a=-1 \\ H^{i}\left(\mathbb{P}_{1}, \mathcal{O}_{\mathbb{P}_{1}}(a+b)^{\oplus(a+1)}\right), & \text { if } a \geqslant 0\end{cases}
$$

Now let us denote the ample line bundle $\mathcal{O}_{Q}(1,1)$ by \mathcal{L} and let $\overline{\mathfrak{M}}(k)$ be the moduli space of semi-stable sheaves of rank 2 on Q with the Chern classes $c_{1}=\mathcal{O}_{Q}(-1,-1)$ and $c_{2}=k$ with respect to \mathcal{L}. The existence and projectivity of $\overline{\mathfrak{M}}(k)$ are shown in [4] and it has an open Zariski subset $\mathfrak{M}(k)$ consisting of the stable vector bundles with the given numeric invariants. By Bogomolov's inequality [8], $\mathfrak{M}(k)$ is empty if $4 k<c_{1}^{2}=2$ and so we consider only the case of $k \geqslant 1$. The dimension of $\mathfrak{M}(k)$ can be computed to be $h^{1}(Q, \mathcal{E} n d(\mathcal{E}))=4 k-5$. Note that $\mathcal{E} \simeq \mathcal{E}^{*}(-1,-1)$ and by the Riemann-Roch theorem [5], we have $\chi(\mathcal{E}(m, m))=2 m^{2}+2 m+1-k$ for $\mathcal{E} \in \overline{\mathfrak{M}}(k)$. For a hyperplane H in \mathbb{P}_{3}, let $C_{H}:=Q \cap H$ be the corresponding hyperplane section on Q.

Definition 2.1. The conic $C \subset Q$ is called a jumping conic if $h^{0}\left(\left.\mathcal{E}\right|_{C}\right) \geqslant 1$.
Remark 2.2. Since any conic $C \subset Q$ is a hyperplane section, we define the set $S(\mathcal{E})$ of jumping conics of \mathcal{E} as a subset of \mathbb{P}_{3}^{*}. More precisely,

$$
S(\mathcal{E}):=\left\{H \in \mathbb{P}_{3}^{*} \mid h^{0}\left(\mathcal{E} \mid{C_{H}}\right) \geqslant 1\right\}
$$

When C_{H} is smooth, it is a jumping conic if the vector bundle \mathcal{E} splits non-generically over it.
Theorem 2.3. (See [6].) For a Hulsbergen bundle $\mathcal{E} \in \mathfrak{M}(k), S(\mathcal{E})$ is a symmetric determinantal hypersurface of degree $k-1$ in \mathbb{P}_{3}^{*} and it has a singular point at $H \in \mathbb{P}_{3}^{*}$ if $h^{0}\left(\left.\mathcal{E}\right|_{C_{H}}\right) \geqslant 2$.

Remark 2.4. The referee pointed out that the converse might not be true in general. Indeed, the determinant of the following matrix is singular along a line but the ideal of 2×2 minors has length 4 :

$$
\left(\begin{array}{ccc}
t_{0} & t_{1} & t_{3} \\
t_{1} & t_{0}+t_{3} & t_{2} \\
t_{3} & t_{2} & 0
\end{array}\right)
$$

Theorem 2.3 enables us to consider a morphism $S: \mathfrak{M}(k) \rightarrow\left|\mathcal{O}_{\mathbb{P}_{3}^{*}}(k-1)\right| \simeq \mathbb{P}_{N}$ with $N=\binom{k+2}{3}-1$. In [6] and [7], the cases of $k=2,3$ are dealt in detail. For example, when $k=2$, the morphism S extends to an isomorphism from $\overline{\mathfrak{M}}(2) \rightarrow \mathbb{P}_{3}$ and $\mathfrak{M}(2)$ is isomorphic to $\mathbb{P}_{3} \backslash Q$. In particular, $S(\mathcal{E})$ determines uniquely $\mathcal{E} \in \mathfrak{M}(2)$. A similar result also holds for $k=3$.

3. Results

From now on, we will investigate $S(\mathcal{E})$ for $\mathcal{E} \in \mathfrak{M}(4)$, which is now a cubic symmetroid surface, i.e. a symmetric determinantal cubic surface in \mathbb{P}_{3}^{*}. Note that a nonsingular cubic surface cannot be symmetrically determinantal [3]. Since $\chi(\mathcal{E}(1,1))=1$ and \mathcal{E} is stable, it admits an exact sequence:

$$
\begin{equation*}
0 \rightarrow \mathcal{O}_{Q} \rightarrow \mathcal{E}(1,1) \rightarrow \mathcal{I}_{Z}(1,1) \rightarrow 0 \tag{1}
\end{equation*}
$$

where Z is a zero-dimensional subscheme of Q with length 4 and $\mathcal{I}_{Z}(1,1)$ is the tensor product of the ideal sheaf of Z and $\mathcal{O}_{Q}(1,1)$. Let us assume that Z is in general position and then we have $h^{0}(\mathcal{E}(1,1))=1$, which leads us to conclude that for $k=4$, a general \mathcal{E} is a Hulsbergen bundle. In particular, Z is uniquely determined by \mathcal{E}. Note that $\mathbb{P} \operatorname{Ext}^{1}\left(\mathcal{I}_{Z}(1,1), \mathcal{O}_{Q}\right) \simeq$ $\mathbb{P} H^{0}\left(\mathcal{O}_{Z}\right)^{*} \simeq \mathbb{P}_{3}$. A general point in this family of extensions corresponds to a stable vector bundle [1] and so $\mathfrak{M}(4)$ is
birational to a \mathbb{P}_{3}-bundle over the Hilbert scheme $Q^{[4]}$ of zero-dimensional subscheme of Q with length 4 . It is consistent with the fact that the dimension of $\mathfrak{M}(4)$ is 11 . Note that $Q^{[4]}$ is a resolution of singularity of $S^{4} Q$, the fourth symmetric power of Q, and in particular it is 8 -dimensional [9].

Assume that Z is not contained in any hyperplane section. If $|Z \cap H|=3$ for a hyperplane section H of \mathbb{P}_{3}^{*}, we can tensor the sequence (1) with $\mathcal{O}_{C_{H}}$ to obtain:

$$
\left.0 \rightarrow \mathcal{O}_{C_{H}} \rightarrow \mathcal{E}(1,1)\right|_{C_{H}} \rightarrow \mathcal{O}_{C_{H}}(-p) \oplus \mathbb{C}_{1} \oplus \mathbb{C}_{2} \oplus \mathbb{C}_{3} \rightarrow 0
$$

where p is a point on C_{H}. The last surjection gives a surjective map $\left.\mathcal{E}(1,1)\right|_{C_{H}} \rightarrow \mathcal{O}_{C_{H}}(-p)$ and its kernel is $\mathcal{O}_{C_{H}}(3 p)$ for degree reason. Twisting by $\mathcal{O}_{C_{H}}(-2 p)$, we obtain:

$$
\left.0 \rightarrow \mathcal{O}_{C_{H}}(p) \rightarrow \mathcal{E}\right|_{C_{H}} \rightarrow \mathcal{O}_{C_{H}}(-3 p) \rightarrow 0
$$

Since $h^{0}\left(\left.\mathcal{E}\right|_{C_{H}}\right)=2, H$ is a singular point of $S(\mathcal{E})$ by Theorem 2.3 and so $S(\mathcal{E})$ has at least 4 singular points.
Proposition 3.1. For a general vector bundle \mathcal{E} in $\mathfrak{M}(4)$, there are exactly 4 singular points and 6 lines in $S(\mathcal{E})$, i.e. $S(\mathcal{E})$ is a Cayley surface.

Proof. Similarly as above, we can prove that H is a point of $S(\mathcal{E})$ if $|Z \cap H|=2$, and not a point of $S(\mathcal{E})$ if $|Z \cap H|=1$. Thus the intersection of $S(\mathcal{E})$ with the hyperplane containing a singular point above is the union of three distinct lines, and in particular $S(\mathcal{E})$ contains 6 lines. Let $Z^{\prime}=\left\{p_{1}, \ldots, p_{4}\right\} \subset S(\mathcal{E})$ be the set of 4 singular points above and denote the line connecting p_{i}, p_{j} by $l_{i j}$. For an arbitrary line $l \subset S(\mathcal{E})$ which is different from $l_{i j}$, let us assume that does not intersect with $l_{i j}$. If $\pi: \mathbb{P}_{3}^{*} \rightarrow \mathbb{P}_{2}^{*}$ is the projection from p_{1}, then the images of l and $l_{i j}, i, j \neq 1$ intersect. It implies that l and $l_{i j}$ intersect for $i, j \neq 2$. But it is impossible, since the plane containing p_{2}, p_{3}, p_{4} would contain l. The case of l meeting $l_{i} j$ can be shown impossible similarly. Thus $S(\mathcal{E})$ contains exactly the 6 lines above and in particular $S(\mathcal{E})$ is not a cone over a plane cubic curve. If $S(\mathcal{E})$ is not normal, then its singular locus would have a 1-dimensional part of degree d and multiplicity m . Its intersection with a generic hyperplane section is a plane cubic curve, and so we have $d=1$ and $m=2$. In other words, the singular locus of $S(\mathcal{E})$ would be a line, which is one of the 6 lines above. It is impossible, since its multiplicity must be 1 , and thus $S(\mathcal{E})$ is normal. We can also easily check that $S(\mathcal{E})$ is irreducible, and so the singularities of $S(\mathcal{E})$ are rational double points. Now, without loss of generality, let us assume that $p_{1}=[1,0,0,0]$ and write the equation f of $S(\mathcal{E})$ by $f=t_{0} f_{2}\left(t_{1}, t_{2}, t_{3}\right)+f_{3}\left(t_{1}, t_{2}, t_{3}\right)$, where f_{i} is a homogeneous polynomial of degree i. It is easy to check that if $p=\left[a_{0}, a_{1}, a_{2}, a_{3}\right] \in S(\mathcal{E})$ is a singular point of $S(\mathcal{E})$, then the conic $V\left(f_{2}\right)$ and the cubic $V\left(f_{3}\right)$ intersect at $\left[a_{1}, a_{2}, a_{3}\right]$ with multiplicity at least 2 . From the irreducibility of $S(\mathcal{E}), V\left(f_{2}\right)$ and $V\left(f_{3}\right)$ do not share common components. So the other singular points than p_{1} must be contained in the 6 lines above and, by the Bézout theorem, they must be the remaining points in Z^{\prime}. Hence $S(\mathcal{E})$ contains exactly 4 singular points and 6 lines connecting them.

Remark 3.2. Considering a \mathbb{P}_{2}-family of hyperplanes of \mathbb{P}_{3} that contains a point of Z, the intersection of \mathbb{P}_{2} with $S(\mathcal{E})$ is a cubic plane curve. Since there are 3 hyperplanes in this family, that contain 3 points of Z, so the intersection of the \mathbb{P}_{2}-family with $S(\mathcal{E})$ is the union of three lines.

Conversely, let us consider a cubic hypersurface S_{3} in \mathbb{P}_{3}^{*} with exactly 4 singular points, say $H_{1}, \ldots, H_{4} \subset \mathbb{P}_{3}$. Then H_{i} 's are 4 hyperplanes of \mathbb{P}_{3} in general position. If S_{3} is equal to $S(\mathcal{E})$ for some $\mathcal{E} \in \mathfrak{M}(4)$ with the exact sequence (1), then there are 3 points of Z on each H_{i}. The intersection of $C_{H_{1}}$ with $H_{i}, i=2,3,4$ is two points of Z and so 3 points of Z are determined. The last point is just the intersection of H_{2}, H_{3} and H_{4}.

Theorem 3.3. The morphism $S: \mathfrak{M}(4) \rightarrow\left|\mathcal{O}_{\mathbb{P}_{3}^{*}}(3)\right|$ is generically injective. In other words, the set of jumping conics of $\mathcal{E} \in \mathfrak{M}(4)$ uniquely determines \mathcal{E} in general.

Proof. It is enough to check that for two different stable vector bundles \mathcal{E} and \mathcal{E}^{\prime} that fit into the sequence (1) with the same $Z, S(\mathcal{E})$ and $S\left(\mathcal{E}^{\prime}\right)$ are different. From the previous argument, they have the same singular points. Now, \mathcal{E} and \mathcal{E}^{\prime} are in the extension family $\operatorname{Ext}^{1}\left(\mathcal{I}_{Z}(1,1), \mathcal{O}_{Q}\right)$, which is isomorphic to $H^{1}\left(\mathcal{I}_{Z}(-1,-1)\right)^{*}$. From the short exact sequence $0 \rightarrow \mathcal{I}_{Z}(-1,-1) \rightarrow \mathcal{I}_{Z} \rightarrow \mathcal{O}_{C_{H}} \rightarrow 0$, where C_{H} is a smooth conic that does not intersect with Z, we have:

$$
0 \rightarrow H^{1}\left(\mathcal{I}_{Z}\right)^{*} \rightarrow H^{1}\left(\mathcal{I}_{Z}(-1,-1)\right)^{*} \xrightarrow{\text { res }} H^{0}\left(\mathcal{O}_{C_{H}}\right)^{*} \rightarrow 0
$$

Here, the map 'res' sends \mathcal{E} to $\left.\mathcal{E}\right|_{C_{H}}$. Note that $H^{1}\left(\mathcal{I}_{Z}\right)^{*}$ is a corank 1 -subspace of $H^{1}\left(\mathcal{I}_{Z}(-1,-1)\right)^{*}$. If we choose H properly so that the image of $H^{1}\left(\mathcal{I}_{Z}\right)^{*}$ contains \mathcal{E}, but not \mathcal{E}^{\prime}, then their splitting will be different. To be precise, we have $\mathcal{E} \mid C_{H}=\mathcal{O}_{C_{H}}(-2 p) \oplus \mathcal{O}_{C_{H}}$ and $\mathcal{E}^{\prime} \mid C_{H}=\mathcal{O}_{C_{H}}(-p)^{\oplus 2}$, where p is a point on C_{H}. In particular, $S(\mathcal{E})$ and $S\left(\mathcal{E}^{\prime}\right)$ are different.

In fact, the argument after Proposition 3.1 can be applied to any symmetric determinantal cubic hypersurface with 4 singular points; we obtain the following:

Corollary 3.4. $\mathfrak{M}(4)$ is birational to the variety of the symmetric determinantal cubic hypersurfaces \mathbb{P}_{3}^{*} with 4 singular points whose corresponding hyperplanes in \mathbb{P}_{3} satisfy the property that any three hyperplanes among them have the intersection point on Q.

Proof. It is known in [3] that cubic surfaces with 4 rational double points are projectively isomorphic to the Cayley 4-nodal cubic surface, which is a cubic surface with 4 nodal points defined by:

$$
t_{0} t_{1} t_{2}+t_{0} t_{1} t_{3}+t_{0} t_{2} t_{3}+t_{1} t_{2} t_{3}=\operatorname{det}\left(\begin{array}{ccc}
t_{0} & 0 & t_{2} \\
0 & t_{1} & -t_{2} \\
-t_{3} & t_{3} & t_{2}+t_{3}
\end{array}\right)
$$

which has 4 nodal points $[1,0,0,0],[0,1,0,0],[0,0,1,0]$ and $[0,0,0,1]$. It means that we have a 3 -dimensional family of cubic symmetroids for each fixed 4 points as singularities. Here $3=\operatorname{dim} \operatorname{PGL}(4)-\operatorname{dim}\left(\mathbb{P}_{3}^{[4]}\right)$. So the assertion follows automatically from the previous theorem, because the dimension of the variety of the cubic symmetroids in the assertion is $11=\operatorname{dim}(\operatorname{PGL}(4))-4$, which is the dimension of $\mathfrak{M}(4)$.

Corollary 3.5. (See Theorem 4.7 in [2].) $\mathfrak{M}(4)$ is rational.

Proof. Let us prove that the variety Y of the cubic symmetroids with 4 singular points whose corresponding hyperplanes have 4 intersection points on Q is rational. First of all, the variety X of cubic symmetroids with 4 singular points generically has a \mathbb{P}_{3}-bundle structure over $\mathbb{P}_{3}^{[4]}$ and it is transitively acted by $\operatorname{PGL}(4)$. Thus X is rational and we have a dominant map $\pi: X \rightarrow \mathbb{P}_{3}^{[4]}$ to a rational variety $\mathbb{P}_{3}^{[4]}$. Since Y is a subvariety of X that is generically a \mathbb{P}_{3}-bundle over $Q^{[4]}$ from π and $Q^{[4]}$ is rational, so Y is a rational variety.

Now let us consider a special case when Z is coplanar. In this case, $S(\mathcal{E})$ is a cubic surface with a unique singular point corresponding to the hyperplane containing Z, say H. Note that $h^{0}(\mathcal{E}(1,1))=2$. Then there is a 1 -dimensional family of zero-dimensional subscheme Z for which \mathcal{E} fits into the sequence (1). Such Z should be contained in C_{H}. For each Z, we can consider the \mathbb{P}_{1}-family of hyperplanes that contain two points of Z, and this corresponds to a line contained in $S(\mathcal{E})$. So we can find 6 lines contained in $S(\mathcal{E})$ out of one such Z. As we vary Z in the 1 -dimensional family, we have infinitely many lines through H contained in $S(\mathcal{E})$. Thus we obtain the following statement:

Proposition 3.6. For the vector bundle \mathcal{E} fitted into the sequence (1) with coplanar $Z, S(\mathcal{E})$ is a cone over a cubic curve in \mathbb{P}_{2}^{*} with the vertex point corresponding to the hyperplane containing Z.

References

[1] F. Catanese, Footnotes to a theorem of I. Reider, in: Algebraic Geometry, L’Aquila, 1988, in: Lect. Notes Math., vol. 1417, Springer, Berlin, 1990, pp. 67-74.
[2] L. Costa, R.M. Miro-Ŕoig, Rationality of moduli spaces of vector bundles on rational surfaces, Nagoya Math. J. 162 (2002) 43-69.
[3] I. Dolgachev, Classical Algebraic Geometry: A Modern View, Cambridge University Press, Cambridge, UK, 2012, xii+639 pp.
[4] D. Gieseker, On the moduli of vector bundles on an algebraic surface, Ann. of Math. (2) 106 (1) (1977) 45-60.
[5] R. Hartshorne, Algebraic Geometry, Graduate Texts in Mathematics, vol. 52, Springer-Verlag, New York, 1977.
[6] S. Huh, Jumping conics on a smooth quadric in \mathbb{P}_{3}, Ann. Mat. Pura Appl. (4) 190 (2) (2011) 195-208.
[7] S. Huh, Moduli of stable sheaves on a smooth quadric and a Brill-Noether locus, J. Pure Appl. Algebra 215 (9) (2011) 2099-2105.
[8] J. Le Potier, Lectures on Vector Bundles, Cambridge Studies in Advanced Mathematics, vol. 54, Cambridge University Press, Cambridge, 1997, Translated by A. Maciocia.
[9] H. Nakajima, Lectures on Hilbert Schemes of Points on Surfaces, University Lecture Series, vol. 18, American Mathematical Society, Providence, RI, 1999.

[^0]: E-mail address: sukmoonh@skku.edu.
 1 The author is supported by the Basic Science Research Program 2010-0009195 through NRF funded by MEST.
 1631-073X/\$ - see front matter © 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
 http://dx.doi.org/10.1016/j.crma.2013.07.018

