

Contents lists available at SciVerse ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

Cubic symmetroids and vector bundles on a quadric surface

Cubiques symétroïdes et fibrés vectoriels sur une surface quadrique

Sukmoon Huh¹

Algebraic Geometry

Department of Mathematics, Sungkyunkwan University, 300 Cheoncheon-dong, Suwon 440-746, Republic of Korea

ARTICLE INFO ABSTRACT Article history We investigate the jumping conics of stable vector bundles $\mathcal E$ of rank 2 on a smooth quadric Received 26 April 2013 surface *Q* with the Chern classes $c_1 = O_Q(-1, -1)$ and $c_2 = 4$ with respect to the ample Accepted after revision 23 July 2013 line bundle $\mathcal{O}_0(1, 1)$. As a consequence, we prove that the set of jumping conics $S(\mathcal{E})$ Available online 2 August 2013 uniquely determines \mathcal{E} and that the moduli space of such bundles is rational. © 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. Presented by Claire Voisin RÉSUMÉ Nous étudions les coniques de saut des fibrés vectoriels stables $\mathcal E$ de rang 2 sur une surface quadratique lisse Q de classes de Chern $c_1 = O_0(-1, -1)$ et $c_2 = 4$ relativement au fibré en droites ample $\mathcal{O}_0(1,1)$. Nous en déduisons que l'ensemble des coniques de saut $S(\mathcal{E})$ détermine \mathcal{E} de maniére unique et que l'espace de modules de ce type de fibrés

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Throughout the article, our base field is \mathbb{C} , the field of complex numbers.

est rationnel.

Let Q be a smooth quadric in $\mathbb{P}_3 = \mathbb{P}(V)$, where V is a 4-dimensional vector space, and $\mathfrak{M}(k)$ be the moduli space of stable vector bundles of rank 2 on Q with the Chern classes $c_1 = \mathcal{O}_Q(-1, -1)$ and $c_2 = k$ with respect to the ample line bundle $\mathcal{L} = \mathcal{O}_Q(1, 1)$. $\mathfrak{M}(k)$ forms an open Zariski subset of the projective variety $\overline{\mathfrak{M}}(k)$, whose points correspond to the semi-stable sheaves on Q with the same numerical invariants. The Zariski tangent space of $\mathfrak{M}(k)$ at \mathcal{E} is naturally isomorphic to $H^1(Q, \mathcal{E}nd(\mathcal{E}))$ [8] and so the dimension of $\mathfrak{M}(k)$ is equal to $h^1(Q, \mathcal{E}nd(\mathcal{E})) = 4k - 5$, since \mathcal{E} is simple. In [6], we define the jumping conics of $\mathcal{E} \in \mathfrak{M}(k)$ as points in \mathbb{P}_3^* and prove that the set of jumping conic is a symmetric determinantal hypersurface of degree k - 1 in \mathbb{P}_3^* . It enables us to consider a morphism:

$$S:\mathfrak{M}(k)\to |\mathcal{O}_{\mathbb{P}_3^*}(k-1)|\simeq \mathbb{P}_N$$

We conjecture in [6] that the general $\mathcal{E} \in \mathfrak{M}(k)$ is uniquely determined by $S(\mathcal{E})$ and prove that this map S is generically injective for $k \leq 3$.

In this article, we prove that the conjecture is true when k = 4. For $\mathcal{E} \in \mathfrak{M}(4)$, $S(\mathcal{E})$ is a cubic symmetroid surface, i.e. a symmetric determinantal cubic hypersurface in \mathbb{P}_3^* . In terms of short exact sequences that \mathcal{E} admits, we can obtain the relation between the singularity of $S(\mathcal{E})$ and the dimension of cohomology of the restriction of \mathcal{E} to its hyperplane section.

E-mail address: sukmoonh@skku.edu.

¹ The author is supported by the Basic Science Research Program 2010-0009195 through NRF funded by MEST.

¹⁶³¹⁻⁰⁷³X/\$ – see front matter © 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. http://dx.doi.org/10.1016/j.crma.2013.07.018

It turns out that $S(\mathcal{E})$ has exactly 4 singular points. It enables us to derive the rationality of $\mathfrak{M}(4)$, which was proven in a much more general setting in [2]. Lastly, we give a brief description of $S(\mathcal{E})$ for non-general bundles of $\mathfrak{M}(4)$. We will denote the dimension of the cohomology $H^i(X, \mathcal{F})$ for a coherent sheaf \mathcal{F} on X by $h^i(X, \mathcal{F})$, or simply by $h^i(\mathcal{F})$ if there is no confusion.

The work in this article has been done during my stay at the Politecnico di Torino and I deeply appreciate the hospitality and support of Prof. Malaspina. I am also deeply grateful to the anonymous referee for a number of corrections and suggestions.

2. Preliminaries

Let *Q* be a smooth quadric surface isomorphic to $\mathbb{P}(V_1) \times \mathbb{P}(V_2)$ for two 2-dimensional vector spaces V_1 and V_2 . Then *Q* is embedded into $\mathbb{P}_3 \simeq \mathbb{P}(V)$ by the Segre map, where $V = V_1 \otimes V_2$. Let us denote $f^*\mathcal{O}_{\mathbb{P}_1}(a) \otimes g^*\mathcal{O}_{\mathbb{P}_1}(b)$ by $\mathcal{O}_Q(a, b)$ and $\mathcal{E} \otimes \mathcal{O}_Q(a, b)$ by $\mathcal{E}(a, b)$ for coherent sheaves \mathcal{E} on *Q*, where *f* and *g* are the projections from *Q* to each factors. Then the canonical line bundle K_Q of *Q* is $\mathcal{O}_Q(-2, -2)$. As a direct consequence of the Kunneth formula, we have:

$$H^{i}(\mathcal{Q}, \mathcal{O}_{\mathcal{Q}}(a, a+b)) = \begin{cases} 0, & \text{if } a = -1; \\ H^{i}(\mathbb{P}_{1}, \mathcal{O}_{\mathbb{P}_{1}}(a+b)^{\oplus (a+1)}), & \text{if } a \ge 0. \end{cases}$$

Now let us denote the ample line bundle $\mathcal{O}_Q(1, 1)$ by \mathcal{L} and let $\overline{\mathfrak{M}}(k)$ be the moduli space of semi-stable sheaves of rank 2 on Q with the Chern classes $c_1 = \mathcal{O}_Q(-1, -1)$ and $c_2 = k$ with respect to \mathcal{L} . The existence and projectivity of $\overline{\mathfrak{M}}(k)$ are shown in [4] and it has an open Zariski subset $\mathfrak{M}(k)$ consisting of the stable vector bundles with the given numeric invariants. By Bogomolov's inequality [8], $\mathfrak{M}(k)$ is empty if $4k < c_1^2 = 2$ and so we consider only the case of $k \ge 1$. The dimension of $\mathfrak{M}(k)$ can be computed to be $h^1(Q, \mathcal{E}nd(\mathcal{E})) = 4k - 5$. Note that $\mathcal{E} \simeq \mathcal{E}^*(-1, -1)$ and by the Riemann-Roch theorem [5], we have $\chi(\mathcal{E}(m,m)) = 2m^2 + 2m + 1 - k$ for $\mathcal{E} \in \overline{\mathfrak{M}}(k)$. For a hyperplane H in \mathbb{P}_3 , let $C_H := Q \cap H$ be the corresponding hyperplane section on Q.

Definition 2.1. The conic $C \subset Q$ is called a *jumping conic* if $h^0(\mathcal{E}|_C) \ge 1$.

Remark 2.2. Since any conic $C \subset Q$ is a hyperplane section, we define the set $S(\mathcal{E})$ of jumping conics of \mathcal{E} as a subset of \mathbb{P}_3^* . More precisely,

$$S(\mathcal{E}) := \left\{ H \in \mathbb{P}_3^* \mid h^0(\mathcal{E}|_{C_H}) \ge 1 \right\}$$

When C_H is smooth, it is a jumping conic if the vector bundle \mathcal{E} splits non-generically over it.

Theorem 2.3. (See [6].) For a Hulsbergen bundle $\mathcal{E} \in \mathfrak{M}(k)$, $S(\mathcal{E})$ is a symmetric determinantal hypersurface of degree k - 1 in \mathbb{P}_3^* and it has a singular point at $H \in \mathbb{P}_3^*$ if $h^0(\mathcal{E}|_{C_H}) \ge 2$.

Remark 2.4. The referee pointed out that the converse might not be true in general. Indeed, the determinant of the following matrix is singular along a line but the ideal of 2×2 minors has length 4:

$$\begin{pmatrix} t_0 & t_1 & t_3 \\ t_1 & t_0 + t_3 & t_2 \\ t_3 & t_2 & 0 \end{pmatrix}.$$

Theorem 2.3 enables us to consider a morphism $S: \mathfrak{M}(k) \to |\mathcal{O}_{\mathbb{P}_3^*}(k-1)| \simeq \mathbb{P}_N$ with $N = \binom{k+2}{3} - 1$. In [6] and [7], the cases of k = 2, 3 are dealt in detail. For example, when k = 2, the morphism S extends to an isomorphism from $\overline{\mathfrak{M}}(2) \to \mathbb{P}_3$ and $\mathfrak{M}(2)$ is isomorphic to $\mathbb{P}_3 \setminus Q$. In particular, $S(\mathcal{E})$ determines uniquely $\mathcal{E} \in \mathfrak{M}(2)$. A similar result also holds for k = 3.

3. Results

From now on, we will investigate $S(\mathcal{E})$ for $\mathcal{E} \in \mathfrak{M}(4)$, which is now a *cubic symmetroid surface*, i.e. a symmetric determinantal cubic surface in \mathbb{P}_3^* . Note that a nonsingular cubic surface cannot be symmetrically determinantal [3]. Since $\chi(\mathcal{E}(1, 1)) = 1$ and \mathcal{E} is stable, it admits an exact sequence:

$$0 \to \mathcal{O}_0 \to \mathcal{E}(1,1) \to \mathcal{I}_Z(1,1) \to 0,\tag{1}$$

where *Z* is a zero-dimensional subscheme of *Q* with length 4 and $\mathcal{I}_Z(1, 1)$ is the tensor product of the ideal sheaf of *Z* and $\mathcal{O}_Q(1, 1)$. Let us assume that *Z* is in general position and then we have $h^0(\mathcal{E}(1, 1)) = 1$, which leads us to conclude that for k = 4, a general \mathcal{E} is a Hulsbergen bundle. In particular, *Z* is uniquely determined by \mathcal{E} . Note that $\mathbb{P}\text{Ext}^1(\mathcal{I}_Z(1, 1), \mathcal{O}_Q) \simeq \mathbb{P}H^0(\mathcal{O}_Z)^* \simeq \mathbb{P}_3$. A general point in this family of extensions corresponds to a stable vector bundle [1] and so $\mathfrak{M}(4)$ is

birational to a \mathbb{P}_3 -bundle over the Hilbert scheme $Q^{[4]}$ of zero-dimensional subscheme of Q with length 4. It is consistent with the fact that the dimension of $\mathfrak{M}(4)$ is 11. Note that $Q^{[4]}$ is a resolution of singularity of S^4Q , the fourth symmetric power of Q, and in particular it is 8-dimensional [9].

Assume that *Z* is not contained in any hyperplane section. If $|Z \cap H| = 3$ for a hyperplane section *H* of \mathbb{P}_3^* , we can tensor the sequence (1) with \mathcal{O}_{C_H} to obtain:

$$0 \to \mathcal{O}_{C_H} \to \mathcal{E}(1,1)|_{C_H} \to \mathcal{O}_{C_H}(-p) \oplus \mathbb{C}_1 \oplus \mathbb{C}_2 \oplus \mathbb{C}_3 \to 0,$$

where *p* is a point on C_H . The last surjection gives a surjective map $\mathcal{E}(1,1)|_{C_H} \to \mathcal{O}_{C_H}(-p)$ and its kernel is $\mathcal{O}_{C_H}(3p)$ for degree reason. Twisting by $\mathcal{O}_{C_H}(-2p)$, we obtain:

$$0 \to \mathcal{O}_{C_H}(p) \to \mathcal{E}|_{C_H} \to \mathcal{O}_{C_H}(-3p) \to 0.$$

Since $h^0(\mathcal{E}|_{C_H}) = 2$, *H* is a singular point of $S(\mathcal{E})$ by Theorem 2.3 and so $S(\mathcal{E})$ has at least 4 singular points.

Proposition 3.1. For a general vector bundle \mathcal{E} in $\mathfrak{M}(4)$, there are exactly 4 singular points and 6 lines in $S(\mathcal{E})$, i.e. $S(\mathcal{E})$ is a Cayley surface.

Proof. Similarly as above, we can prove that H is a point of $S(\mathcal{E})$ if $|Z \cap H| = 2$, and not a point of $S(\mathcal{E})$ if $|Z \cap H| = 1$. Thus the intersection of $S(\mathcal{E})$ with the hyperplane containing a singular point above is the union of three distinct lines, and in particular $S(\mathcal{E})$ contains 6 lines. Let $Z' = \{p_1, \dots, p_4\} \subset S(\mathcal{E})$ be the set of 4 singular points above and denote the line connecting p_i , p_j by l_{ij} . For an arbitrary line $l \subset S(\mathcal{E})$ which is different from l_{ij} , let us assume that l does not intersect with l_{ij} . If $\pi : \mathbb{P}_3^* \longrightarrow \mathbb{P}_2^*$ is the projection from p_1 , then the images of l and l_{ij} , $i, j \neq 1$ intersect. It implies that l and l_{ij} intersect for i, $j \neq 2$. But it is impossible, since the plane containing p_2 , p_3 , p_4 would contain *l*. The case of *l* meeting l_i can be shown impossible similarly. Thus $S(\mathcal{E})$ contains exactly the 6 lines above and in particular $S(\mathcal{E})$ is not a cone over a plane cubic curve. If $S(\mathcal{E})$ is not normal, then its singular locus would have a 1-dimensional part of degree d and multiplicity m. Its intersection with a generic hyperplane section is a plane cubic curve, and so we have d = 1 and m = 2. In other words, the singular locus of $S(\mathcal{E})$ would be a line, which is one of the 6 lines above. It is impossible, since its multiplicity must be 1, and thus $S(\mathcal{E})$ is normal. We can also easily check that $S(\mathcal{E})$ is irreducible, and so the singularities of $S(\mathcal{E})$ are rational double points. Now, without loss of generality, let us assume that $p_1 = [1, 0, 0, 0]$ and write the equation f of $S(\mathcal{E})$ by $f = t_0 f_2(t_1, t_2, t_3) + f_3(t_1, t_2, t_3)$, where f_i is a homogeneous polynomial of degree *i*. It is easy to check that if $p = [a_0, a_1, a_2, a_3] \in S(\mathcal{E})$ is a singular point of $S(\mathcal{E})$, then the conic $V(f_2)$ and the cubic $V(f_3)$ intersect at $[a_1, a_2, a_3]$ with multiplicity at least 2. From the irreducibility of $S(\mathcal{E})$, $V(f_2)$ and $V(f_3)$ do not share common components. So the other singular points than p_1 must be contained in the 6 lines above and, by the Bézout theorem, they must be the remaining points in Z'. Hence $S(\mathcal{E})$ contains exactly 4 singular points and 6 lines connecting them. \Box

Remark 3.2. Considering a \mathbb{P}_2 -family of hyperplanes of \mathbb{P}_3 that contains a point of Z, the intersection of \mathbb{P}_2 with $S(\mathcal{E})$ is a cubic plane curve. Since there are 3 hyperplanes in this family, that contain 3 points of Z, so the intersection of the \mathbb{P}_2 -family with $S(\mathcal{E})$ is the union of three lines.

Conversely, let us consider a cubic hypersurface S_3 in \mathbb{P}_3^* with exactly 4 singular points, say $H_1, \ldots, H_4 \subset \mathbb{P}_3$. Then H_i 's are 4 hyperplanes of \mathbb{P}_3 in general position. If S_3 is equal to $S(\mathcal{E})$ for some $\mathcal{E} \in \mathfrak{M}(4)$ with the exact sequence (1), then there are 3 points of Z on each H_i . The intersection of C_{H_1} with H_i , i = 2, 3, 4 is two points of Z and so 3 points of Z are determined. The last point is just the intersection of H_2 , H_3 and H_4 .

Theorem 3.3. The morphism $S : \mathfrak{M}(4) \to |\mathcal{O}_{\mathbb{P}_3^*}(3)|$ is generically injective. In other words, the set of jumping conics of $\mathcal{E} \in \mathfrak{M}(4)$ uniquely determines \mathcal{E} in general.

Proof. It is enough to check that for two different stable vector bundles \mathcal{E} and \mathcal{E}' that fit into the sequence (1) with the same *Z*, *S*(\mathcal{E}) and *S*(\mathcal{E}') are different. From the previous argument, they have the same singular points. Now, \mathcal{E} and \mathcal{E}' are in the extension family Ext¹($\mathcal{I}_Z(1, 1), \mathcal{O}_Q$), which is isomorphic to $H^1(\mathcal{I}_Z(-1, -1))^*$. From the short exact sequence $0 \rightarrow \mathcal{I}_Z(-1, -1) \rightarrow \mathcal{I}_Z \rightarrow \mathcal{O}_{C_H} \rightarrow 0$, where C_H is a smooth conic that does not intersect with *Z*, we have:

$$0 \to H^1(\mathcal{I}_Z)^* \to H^1\big(\mathcal{I}_Z(-1,-1)\big)^* \stackrel{\text{res}}{\to} H^0(\mathcal{O}_{C_H})^* \to 0.$$

Here, the map 'res' sends \mathcal{E} to $\mathcal{E}|_{C_H}$. Note that $H^1(\mathcal{I}_Z)^*$ is a corank 1-subspace of $H^1(\mathcal{I}_Z(-1,-1))^*$. If we choose H properly so that the image of $H^1(\mathcal{I}_Z)^*$ contains \mathcal{E} , but not \mathcal{E}' , then their splitting will be different. To be precise, we have $\mathcal{E}|_{C_H} = \mathcal{O}_{C_H}(-2p) \oplus \mathcal{O}_{C_H}$ and $\mathcal{E}'|_{C_H} = \mathcal{O}_{C_H}(-p)^{\oplus 2}$, where p is a point on C_H . In particular, $S(\mathcal{E})$ and $S(\mathcal{E}')$ are different. \Box

In fact, the argument after Proposition 3.1 can be applied to any symmetric determinantal cubic hypersurface with 4 singular points; we obtain the following:

Corollary 3.4. $\mathfrak{M}(4)$ is birational to the variety of the symmetric determinantal cubic hypersurfaces \mathbb{P}_3^* with 4 singular points whose corresponding hyperplanes in \mathbb{P}_3 satisfy the property that any three hyperplanes among them have the intersection point on Q.

Proof. It is known in [3] that cubic surfaces with 4 rational double points are projectively isomorphic to the *Cayley* 4-*nodal cubic surface*, which is a cubic surface with 4 nodal points defined by:

$$t_0t_1t_2 + t_0t_1t_3 + t_0t_2t_3 + t_1t_2t_3 = \det \begin{pmatrix} t_0 & 0 & t_2 \\ 0 & t_1 & -t_2 \\ -t_3 & t_3 & t_2 + t_3 \end{pmatrix},$$

which has 4 nodal points [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0] and [0, 0, 0, 1]. It means that we have a 3-dimensional family of cubic symmetroids for each fixed 4 points as singularities. Here $3 = \dim PGL(4) - \dim(\mathbb{P}_3^{[4]})$. So the assertion follows automatically from the previous theorem, because the dimension of the variety of the cubic symmetroids in the assertion is $11 = \dim(PGL(4)) - 4$, which is the dimension of $\mathfrak{M}(4)$. \Box

Corollary 3.5. (See Theorem 4.7 in [2].) $\mathfrak{M}(4)$ is rational.

Proof. Let us prove that the variety *Y* of the cubic symmetroids with 4 singular points whose corresponding hyperplanes have 4 intersection points on *Q* is rational. First of all, the variety *X* of cubic symmetroids with 4 singular points generically has a \mathbb{P}_3 -bundle structure over $\mathbb{P}_3^{[4]}$ and it is transitively acted by PGL(4). Thus *X* is rational and we have a dominant map $\pi : X \longrightarrow \mathbb{P}_3^{[4]}$ to a rational variety $\mathbb{P}_3^{[4]}$. Since *Y* is a subvariety of *X* that is generically a \mathbb{P}_3 -bundle over $Q^{[4]}$ from π and $Q^{[4]}$ is rational, so *Y* is a rational variety. \Box

Now let us consider a special case when Z is coplanar. In this case, $S(\mathcal{E})$ is a cubic surface with a unique singular point corresponding to the hyperplane containing Z, say H. Note that $h^0(\mathcal{E}(1, 1)) = 2$. Then there is a 1-dimensional family of zero-dimensional subscheme Z for which \mathcal{E} fits into the sequence (1). Such Z should be contained in C_H . For each Z, we can consider the \mathbb{P}_1 -family of hyperplanes that contain two points of Z, and this corresponds to a line contained in $S(\mathcal{E})$. So we can find 6 lines contained in $S(\mathcal{E})$ out of one such Z. As we vary Z in the 1-dimensional family, we have infinitely many lines through H contained in $S(\mathcal{E})$. Thus we obtain the following statement:

Proposition 3.6. For the vector bundle \mathcal{E} fitted into the sequence (1) with coplanar *Z*, *S*(\mathcal{E}) is a cone over a cubic curve in \mathbb{P}_2^* with the vertex point corresponding to the hyperplane containing *Z*.

References

- [1] F. Catanese, Footnotes to a theorem of I. Reider, in: Algebraic Geometry, L'Aquila, 1988, in: Lect. Notes Math., vol. 1417, Springer, Berlin, 1990, pp. 67–74.
- [2] L. Costa, R.M. Miro-Ŕoig, Rationality of moduli spaces of vector bundles on rational surfaces, Nagoya Math. J. 162 (2002) 43-69.
- [3] I. Dolgachev, Classical Algebraic Geometry: A Modern View, Cambridge University Press, Cambridge, UK, 2012, xii+639 pp.
- [4] D. Gieseker, On the moduli of vector bundles on an algebraic surface, Ann. of Math. (2) 106 (1) (1977) 45-60.
- [5] R. Hartshorne, Algebraic Geometry, Graduate Texts in Mathematics, vol. 52, Springer-Verlag, New York, 1977.
- [6] S. Huh, Jumping conics on a smooth quadric in \mathbb{P}_3 , Ann. Mat. Pura Appl. (4) 190 (2) (2011) 195–208.
- [7] S. Huh, Moduli of stable sheaves on a smooth quadric and a Brill-Noether locus, J. Pure Appl. Algebra 215 (9) (2011) 2099-2105.
- [8] J. Le Potier, Lectures on Vector Bundles, Cambridge Studies in Advanced Mathematics, vol. 54, Cambridge University Press, Cambridge, 1997, Translated by A. Maciocia.
- [9] H. Nakajima, Lectures on Hilbert Schemes of Points on Surfaces, University Lecture Series, vol. 18, American Mathematical Society, Providence, RI, 1999.