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We investigate the jumping conics of stable vector bundles E of rank 2 on a smooth quadric
surface Q with the Chern classes c1 = OQ (−1,−1) and c2 = 4 with respect to the ample
line bundle OQ (1,1). As a consequence, we prove that the set of jumping conics S(E)

uniquely determines E and that the moduli space of such bundles is rational.
© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Nous étudions les coniques de saut des fibrés vectoriels stables E de rang 2 sur une
surface quadratique lisse Q de classes de Chern c1 = OQ (−1,−1) et c2 = 4 relativement
au fibré en droites ample OQ (1,1). Nous en déduisons que l’ensemble des coniques de
saut S(E) détermine E de maniére unique et que l’espace de modules de ce type de fibrés
est rationnel.

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Throughout the article, our base field is C, the field of complex numbers.
Let Q be a smooth quadric in P3 = P(V ), where V is a 4-dimensional vector space, and M(k) be the moduli space

of stable vector bundles of rank 2 on Q with the Chern classes c1 = OQ (−1,−1) and c2 = k with respect to the ample
line bundle L = OQ (1,1). M(k) forms an open Zariski subset of the projective variety M(k), whose points correspond to
the semi-stable sheaves on Q with the same numerical invariants. The Zariski tangent space of M(k) at E is naturally
isomorphic to H1(Q ,End(E)) [8] and so the dimension of M(k) is equal to h1(Q ,End(E)) = 4k − 5, since E is simple. In
[6], we define the jumping conics of E ∈ M(k) as points in P

∗
3 and prove that the set of jumping conic is a symmetric

determinantal hypersurface of degree k − 1 in P
∗
3. It enables us to consider a morphism:

S : M(k) → ∣∣OP
∗
3
(k − 1)

∣∣ � PN .

We conjecture in [6] that the general E ∈ M(k) is uniquely determined by S(E) and prove that this map S is generically
injective for k � 3.

In this article, we prove that the conjecture is true when k = 4. For E ∈ M(4), S(E) is a cubic symmetroid surface, i.e.
a symmetric determinantal cubic hypersurface in P

∗
3. In terms of short exact sequences that E admits, we can obtain the

relation between the singularity of S(E) and the dimension of cohomology of the restriction of E to its hyperplane section.
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It turns out that S(E) has exactly 4 singular points. It enables us to derive the rationality of M(4), which was proven in
a much more general setting in [2]. Lastly, we give a brief description of S(E) for non-general bundles of M(4). We will
denote the dimension of the cohomology Hi(X,F) for a coherent sheaf F on X by hi(X,F), or simply by hi(F) if there is
no confusion.

The work in this article has been done during my stay at the Politecnico di Torino and I deeply appreciate the hospi-
tality and support of Prof. Malaspina. I am also deeply grateful to the anonymous referee for a number of corrections and
suggestions.

2. Preliminaries

Let Q be a smooth quadric surface isomorphic to P(V 1) × P(V 2) for two 2-dimensional vector spaces V 1 and V 2. Then
Q is embedded into P3 � P(V ) by the Segre map, where V = V 1 ⊗ V 2. Let us denote f ∗OP1 (a) ⊗ g∗OP1 (b) by OQ (a,b)

and E ⊗OQ (a,b) by E(a,b) for coherent sheaves E on Q , where f and g are the projections from Q to each factors. Then
the canonical line bundle K Q of Q is OQ (−2,−2). As a direct consequence of the Kunneth formula, we have:

Hi(Q ,OQ (a,a + b)
) =

{
0, if a = −1;
Hi(P1,OP1(a + b)⊕(a+1)), if a � 0.

Now let us denote the ample line bundle OQ (1,1) by L and let M(k) be the moduli space of semi-stable sheaves of
rank 2 on Q with the Chern classes c1 =OQ (−1,−1) and c2 = k with respect to L. The existence and projectivity of M(k)

are shown in [4] and it has an open Zariski subset M(k) consisting of the stable vector bundles with the given numeric
invariants. By Bogomolov’s inequality [8], M(k) is empty if 4k < c2

1 = 2 and so we consider only the case of k � 1. The
dimension of M(k) can be computed to be h1(Q ,End(E)) = 4k − 5. Note that E � E∗(−1,−1) and by the Riemann–Roch
theorem [5], we have χ(E(m,m)) = 2m2 + 2m + 1 − k for E ∈ M(k). For a hyperplane H in P3, let C H := Q ∩ H be the
corresponding hyperplane section on Q .

Definition 2.1. The conic C ⊂ Q is called a jumping conic if h0(E |C ) � 1.

Remark 2.2. Since any conic C ⊂ Q is a hyperplane section, we define the set S(E) of jumping conics of E as a subset of P∗
3.

More precisely,

S(E) := {
H ∈ P

∗
3

∣∣ h0(E|C H ) � 1
}
.

When C H is smooth, it is a jumping conic if the vector bundle E splits non-generically over it.

Theorem 2.3. (See [6].) For a Hulsbergen bundle E ∈ M(k), S(E) is a symmetric determinantal hypersurface of degree k − 1 in P
∗
3 and

it has a singular point at H ∈ P
∗
3 if h0(E |C H ) � 2.

Remark 2.4. The referee pointed out that the converse might not be true in general. Indeed, the determinant of the following
matrix is singular along a line but the ideal of 2 × 2 minors has length 4:⎛

⎝
t0 t1 t3

t1 t0 + t3 t2

t3 t2 0

⎞
⎠ .

Theorem 2.3 enables us to consider a morphism S : M(k) → |OP
∗
3
(k − 1)| � PN with N = (k+2

3

) − 1. In [6] and [7], the

cases of k = 2,3 are dealt in detail. For example, when k = 2, the morphism S extends to an isomorphism from M(2) → P3
and M(2) is isomorphic to P3\Q . In particular, S(E) determines uniquely E ∈ M(2). A similar result also holds for k = 3.

3. Results

From now on, we will investigate S(E) for E ∈ M(4), which is now a cubic symmetroid surface, i.e. a symmetric de-
terminantal cubic surface in P

∗
3. Note that a nonsingular cubic surface cannot be symmetrically determinantal [3]. Since

χ(E(1,1)) = 1 and E is stable, it admits an exact sequence:

0 → OQ → E(1,1) → IZ (1,1) → 0, (1)

where Z is a zero-dimensional subscheme of Q with length 4 and IZ (1,1) is the tensor product of the ideal sheaf of Z and
OQ (1,1). Let us assume that Z is in general position and then we have h0(E(1,1)) = 1, which leads us to conclude that for
k = 4, a general E is a Hulsbergen bundle. In particular, Z is uniquely determined by E . Note that PExt1(IZ (1,1),OQ ) �
PH0(OZ )∗ � P3. A general point in this family of extensions corresponds to a stable vector bundle [1] and so M(4) is
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birational to a P3-bundle over the Hilbert scheme Q [4] of zero-dimensional subscheme of Q with length 4. It is consistent
with the fact that the dimension of M(4) is 11. Note that Q [4] is a resolution of singularity of S4 Q , the fourth symmetric
power of Q , and in particular it is 8-dimensional [9].

Assume that Z is not contained in any hyperplane section. If |Z ∩ H | = 3 for a hyperplane section H of P∗
3, we can tensor

the sequence (1) with OC H to obtain:

0 → OC H → E(1,1)|C H → OC H (−p) ⊕C1 ⊕C2 ⊕C3 → 0,

where p is a point on C H . The last surjection gives a surjective map E(1,1)|C H → OC H (−p) and its kernel is OC H (3p) for
degree reason. Twisting by OC H (−2p), we obtain:

0 → OC H (p) → E|C H → OC H (−3p) → 0.

Since h0(E |C H ) = 2, H is a singular point of S(E) by Theorem 2.3 and so S(E) has at least 4 singular points.

Proposition 3.1. For a general vector bundle E in M(4), there are exactly 4 singular points and 6 lines in S(E), i.e. S(E) is a Cayley
surface.

Proof. Similarly as above, we can prove that H is a point of S(E) if |Z ∩ H | = 2, and not a point of S(E) if |Z ∩ H | = 1.
Thus the intersection of S(E) with the hyperplane containing a singular point above is the union of three distinct lines, and
in particular S(E) contains 6 lines. Let Z ′ = {p1, . . . , p4} ⊂ S(E) be the set of 4 singular points above and denote the line
connecting pi , p j by li j . For an arbitrary line l ⊂ S(E) which is different from li j , let us assume that l does not intersect
with li j . If π : P∗

3 ��� P∗
2 is the projection from p1, then the images of l and li j , i, j �= 1 intersect. It implies that l and li j

intersect for i, j �= 2. But it is impossible, since the plane containing p2, p3, p4 would contain l. The case of l meeting
li j can be shown impossible similarly. Thus S(E) contains exactly the 6 lines above and in particular S(E) is not a cone
over a plane cubic curve. If S(E) is not normal, then its singular locus would have a 1-dimensional part of degree d and
multiplicity m. Its intersection with a generic hyperplane section is a plane cubic curve, and so we have d = 1 and m = 2.
In other words, the singular locus of S(E) would be a line, which is one of the 6 lines above. It is impossible, since its
multiplicity must be 1, and thus S(E) is normal. We can also easily check that S(E) is irreducible, and so the singularities
of S(E) are rational double points. Now, without loss of generality, let us assume that p1 = [1,0,0,0] and write the equation
f of S(E) by f = t0 f2(t1, t2, t3)+ f3(t1, t2, t3), where f i is a homogeneous polynomial of degree i. It is easy to check that if
p = [a0,a1,a2,a3] ∈ S(E) is a singular point of S(E), then the conic V ( f2) and the cubic V ( f3) intersect at [a1,a2,a3] with
multiplicity at least 2. From the irreducibility of S(E), V ( f2) and V ( f3) do not share common components. So the other
singular points than p1 must be contained in the 6 lines above and, by the Bézout theorem, they must be the remaining
points in Z ′ . Hence S(E) contains exactly 4 singular points and 6 lines connecting them. �
Remark 3.2. Considering a P2-family of hyperplanes of P3 that contains a point of Z , the intersection of P2 with S(E) is
a cubic plane curve. Since there are 3 hyperplanes in this family, that contain 3 points of Z , so the intersection of the
P2-family with S(E) is the union of three lines.

Conversely, let us consider a cubic hypersurface S3 in P
∗
3 with exactly 4 singular points, say H1, . . . , H4 ⊂ P3. Then Hi ’s

are 4 hyperplanes of P3 in general position. If S3 is equal to S(E) for some E ∈ M(4) with the exact sequence (1), then
there are 3 points of Z on each Hi . The intersection of C H1 with Hi , i = 2,3,4 is two points of Z and so 3 points of Z are
determined. The last point is just the intersection of H2, H3 and H4.

Theorem 3.3. The morphism S : M(4) → |OP
∗
3
(3)| is generically injective. In other words, the set of jumping conics of E ∈ M(4)

uniquely determines E in general.

Proof. It is enough to check that for two different stable vector bundles E and E ′ that fit into the sequence (1) with the
same Z , S(E) and S(E ′) are different. From the previous argument, they have the same singular points. Now, E and E ′
are in the extension family Ext1(IZ (1,1),OQ ), which is isomorphic to H1(IZ (−1,−1))∗ . From the short exact sequence
0 → IZ (−1,−1) → IZ →OC H → 0, where C H is a smooth conic that does not intersect with Z , we have:

0 → H1(IZ )∗ → H1(IZ (−1,−1)
)∗ res→ H0(OC H )∗ → 0.

Here, the map ‘res’ sends E to E |C H . Note that H1(IZ )∗ is a corank 1-subspace of H1(IZ (−1,−1))∗ . If we choose H
properly so that the image of H1(IZ )∗ contains E , but not E ′ , then their splitting will be different. To be precise, we have
E |C H =OC H (−2p)⊕OC H and E ′|C H =OC H (−p)⊕2, where p is a point on C H . In particular, S(E) and S(E ′) are different. �

In fact, the argument after Proposition 3.1 can be applied to any symmetric determinantal cubic hypersurface with 4
singular points; we obtain the following:
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Corollary 3.4. M(4) is birational to the variety of the symmetric determinantal cubic hypersurfaces P∗
3 with 4 singular points whose

corresponding hyperplanes in P3 satisfy the property that any three hyperplanes among them have the intersection point on Q .

Proof. It is known in [3] that cubic surfaces with 4 rational double points are projectively isomorphic to the Cayley 4-nodal
cubic surface, which is a cubic surface with 4 nodal points defined by:

t0t1t2 + t0t1t3 + t0t2t3 + t1t2t3 = det

⎛
⎝

t0 0 t2

0 t1 −t2

−t3 t3 t2 + t3

⎞
⎠ ,

which has 4 nodal points [1,0,0,0], [0,1,0,0], [0,0,1,0] and [0,0,0,1]. It means that we have a 3-dimensional family
of cubic symmetroids for each fixed 4 points as singularities. Here 3 = dim PGL(4) − dim(P

[4]
3 ). So the assertion follows

automatically from the previous theorem, because the dimension of the variety of the cubic symmetroids in the assertion is
11 = dim(PGL(4)) − 4, which is the dimension of M(4). �
Corollary 3.5. (See Theorem 4.7 in [2].) M(4) is rational.

Proof. Let us prove that the variety Y of the cubic symmetroids with 4 singular points whose corresponding hyperplanes
have 4 intersection points on Q is rational. First of all, the variety X of cubic symmetroids with 4 singular points generically
has a P3-bundle structure over P

[4]
3 and it is transitively acted by PGL(4). Thus X is rational and we have a dominant map

π : X ��� P[4]
3 to a rational variety P

[4]
3 . Since Y is a subvariety of X that is generically a P3-bundle over Q [4] from π and

Q [4] is rational, so Y is a rational variety. �
Now let us consider a special case when Z is coplanar. In this case, S(E) is a cubic surface with a unique singular point

corresponding to the hyperplane containing Z , say H . Note that h0(E(1,1)) = 2. Then there is a 1-dimensional family of
zero-dimensional subscheme Z for which E fits into the sequence (1). Such Z should be contained in C H . For each Z , we
can consider the P1-family of hyperplanes that contain two points of Z , and this corresponds to a line contained in S(E).
So we can find 6 lines contained in S(E) out of one such Z . As we vary Z in the 1-dimensional family, we have infinitely
many lines through H contained in S(E). Thus we obtain the following statement:

Proposition 3.6. For the vector bundle E fitted into the sequence (1) with coplanar Z , S(E) is a cone over a cubic curve in P
∗
2 with the

vertex point corresponding to the hyperplane containing Z .
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