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The aim of this note is to prove a result of effective stability for a non-autonomous
perturbation of an integrable Hamiltonian system, provided that the perturbation depends
slowly on time. Then we use this result to clarify and extend a stability result of Giorgilli
and Zehnder for a mechanical system with an arbitrary time-dependent potential.
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r é s u m é

Le but de cette note est de démontrer un résultat de stabilité effective pour une
perturbation non autonome d’un système hamiltonien intégrable, sous la condition que la
perturbation dépende lentement du temps. Nous utilisons ensuite ce résultat pour clarifier
et généraliser un résultat de stabilité de Giorgilli et Zehnder pour des systèmes mécaniques
dont le potentiel dépend arbitrairement du temps.

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let n ∈N, n � 2, Tn = R
n/Zn and consider the Hamiltonian system defined by H : Tn ×R

n ×R→ R,

H(θ, I, t) = h(I) + ε f (θ, I, t), (θ, I, t) = (θ1, . . . , θn, I1, . . . , In, t) ∈ T
n ×R

n ×R, ε > 0. (1)

Nekhoroshev proved [11] that, whenever h is steep (see Section 2 for a definition), f (θ, I, t) = f (θ, I) is time-independent
and H is real-analytic, there exist positive constants ε0, c1, c2, c3,a,b such that for all ε � ε0 and all solutions (θ(t), I(t)), if
|t|� c2 exp(c3ε

−a), then we have the following stability estimate:

∣∣I(t) − I(0)
∣∣ = max

1�i�n

∣∣Ii(t) − Ii(0)
∣∣ � c1ε

b. (2)

In the particular case where h is (strictly uniformly) convex or quasi-convex, following a work of Lochak [7] it was proved
[9,13], using preservation of energy arguments, that one can choose a = b = (2n)−1 in (2), and that these values are close
to optimal (in the general steep case, however, there are still no realistic values for these stability exponents a and b).
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The purpose of this note is to discuss to which extent a stability estimate similar to (2) holds true if the perturbation is
allowed to depend on time.

Assume first that f depends periodically on time, that is f (θ, I, t) = f (θ, I, t + T ) in (1) for some T > 0 (we may
assume T = 1 by a time scaling). Removing the time dependence by adding an extra degree of freedom, the Hamiltonian is
equivalent to:

H̃(θ,ϕ, I, J ) = h̃(I, J ) + ε f (θ,ϕ, I), (θ,ϕ = t, I, J ) ∈ T
n ×T×R

n ×R, h̃(I, J ) = h(I) + J .

It turns out that if h is convex, then h̃ is quasi-convex and so (2) holds true with a = b = (2(n + 1))−1. In general, it is
possible for h̃ to be steep, in which case (2) is satisfied, but it is not clear how to formulate a condition on h (and not on h̃)
to ensure that (2) holds true.

Now assume that f depends quasi-periodically on time, that is f (θ, I, t) = F (θ, I, tω) in (1) for some function F : Tn ×
R

n × T
m → R and some vector ω ∈ R

m , which we can assume to be non-resonant (k · ω �= 0 for any non-zero k ∈ Z
m). As

before, the time dependence can be removed by adding m degrees of freedom and we are led to consider H̃(θ,ϕ, I, J ) =
h̃(I, J ) + ε f (θ,ϕ, I), but this time:

(θ,ϕ = tω, I, J ) ∈ T
n ×T

m ×R
n ×R

m, h̃(I, J ) = h(I) + ω · J .

It was conjectured by Chirikov [3], and then again by Lochak [8], that if h is convex and ω satisfies a Diophantine condition
of exponent τ � m − 1 (there exists a constant γ > 0 such that |k · ω| � γ |k|−τ for any non-zero k ∈ Z

m), then the esti-
mate (2) holds true and, moreover, we can choose a = b = (2(n + 1 + τ ))−1. If m = 1, then τ = 0 and we are in the periodic
case, so the conjecture is true. However, if m > 1, h̃ cannot be steep and the problem is still completely open. Even though
the conjecture is sometimes considered as granted (without the explicit values for a and b, see, for instance, [6]), there is
still no proof. Needless to say that the situation in the general case (without the convexity assumption on h) is even more
complicated.

In a different direction, Giorgilli and Zehnder [4] considered the following time-dependent Hamiltonian:

G(θ, I, t) = h2(I) + V (θ, t), (θ, I, t) ∈ T
n ×R

n ×R, h2(I) = I2
1 + · · · + I2

n,

and proved the following Nekhoroshev-type result: if G is real-analytic and V is uniformly bounded, then for R sufficiently
large, if I0 belongs to the open ball B R of radius R centered at the origin, then I(t) ∈ B2R for |t| � c2 exp(c3 Rd) for some
positive constants c2, c3, and d. Even though such a system is clearly not of the form (1), the fact that no restriction on the
time dependence is imposed in their result has led to several confusions. In [4], the authors themselves assert that “extra
work is needed because the time dependence is not assumed to be periodic or quasi-periodic”. Even more surprising, one
can read (in [10] for instance) that this result implies that the estimate (2) holds true for (1) without any restriction on the
time dependence. Concerning the latter assertion, it is simply wrong and it seems very unlikely to have a non-trivial stability
estimate for (1) with an arbitrary time dependence. As for the former assertion, it is not difficult to see that the system
considered in [4] can be given the form (1), but with a perturbation depending “slowly” (and not arbitrarily) on time (see
Section 2 for a definition of what we mean by “slowly” depending on time, and Section 3 for more details on the system
considered in [4]). We will show in Section 2 that for a Hamiltonian system depending “slowly” on time, essentially classical
techniques can be used to prove that (2) holds true, and that the non-periodicity or non-quasi-periodicity of time in this
restricted context plays absolutely no role (as a matter of fact, we already explained that, for a periodic or quasi-periodic
time dependence that is not slow, basic questions are still open). Then, in Section 3, we will use this result to derive, in a
simpler way, a more general statement than the one contained in [4].

2. A stability result

For a given ρ > 0, recall that Bρ is the open ball in R
n of radius ρ (with respect to the supremum norm) around the

origin. A function h ∈ C2(Bρ) is said to be steep if, for any affine subspace S of Rn intersecting Bρ , the restriction h|S has
only isolated critical points (it is not the original definition of Nekhoroshev, but it is equivalent to it, see [5] and [12]). We
will assume that the operator norm |∇2h(I)| is bounded uniformly in I ∈ Bρ . Then, given r, s > 0, let us define the complex
domain:

Dr,s = {
(θ, I, t) ∈ (

C
n/Zn) ×C

n ×C
∣
∣
∣
∣(Im(θ1), . . . , Im(θn)

)∣∣ < s,
∣
∣Im(t)

∣
∣ < s, d(I, Bρ) < r

}
,

where the distance d is induced by the supremum norm. For a fixed constant λ > 0 and a “small” parameter 0 < ε � 1,
we consider H(θ, I, t) = h(I) + ε f (θ, I, ελt) defined on Dr,s , real-analytic (that is H is analytic and real-valued for real
arguments), and we assume that | f (θ, I, t)| � 1 for any (θ, I, t) ∈Dr,s .

Theorem 2.1. Under the previous assumptions, there exist positive constants ε0, c1, c2, c3 , that depend on n,ρ,h, r, s, λ, and positive
constants a,b that depend only on n,h, such that if ε � ε0 , for all solutions (θ(t), I(t)) of the Hamiltonian system defined by H, if
I(0) ∈ Bρ/2 , then the estimate |I(t) − I(0)| � c1ε

b holds true for all time |t| � c2 exp(c3ε
−a).
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Note that a general time-dependent perturbation of an integrable Hamiltonian system is simply of the form h(I) +
ε f (θ, I, t); the specific Hamiltonian H that we considered above (with f (θ, I, ελt) instead of f (θ, I, t)) is what we call
a “slow” time-dependent perturbation of an integrable Hamiltonian system (a more general definition of a slow time-
dependent perturbation would be to replace ελt by μ(ε)t for an increasing analytic function μ : (0,+∞) → (0,+∞)

satisfying limε→0 μ(ε) = 0, and a statement similar to Theorem 2.1 holds true in this setting). The case of a general (non-
slow) time-dependent perturbation, which is the most interesting and most difficult, was discussed in the Introduction and
we expect that no non-trivial stability results can be obtained unless the time dependence is driven by a recurrent dynam-
ics (we will not try to make this precise, but a simple and yet open case is when the time dependence is quasi-periodic).
For a slow time-dependent perturbation, Theorem 2.1 claims that we have effective stability exactly as if the perturba-
tion were time independent (in particular, quasi-periodicity or any other assumption is irrelevant in the context of a slow
time-dependent perturbation).

Let us now explain the proof of Theorem 2.1, which follows from the arguments exposed in [2] or [1], up to some
technical points that we shall detail now. First we remove the time dependence: we let x = ελt and we introduce a variable
y canonically conjugated with x, so that the Hamiltonian is equivalent to:

H̃(θ, I, x, y) = h(I) + ελ y + ε f (θ, I, x) = h(I) + f̃ (θ, I, x, y), (θ, I, x, y) ∈ D̃r,s, (3)

where D̃r,s = Dr,s × {y ∈ C | |Im(y)| < s}. The fact that the dependence on time is slow allows us to keep the integrable
part fixed when removing the time dependence, as one can consider that the extra degree of freedom only affects the
perturbation. The new perturbation f̃ depends on parameters or “degenerate” variables x and y (degenerate since they
are not present in the integrable part), and such systems were already considered by Nekhoroshev [11]. However, a dif-
ficulty arises: for subsequent arguments, it is important for the (real part of the) variable y to be unbounded, which
is indeed the case by our definition of D̃r,s; but on this extended domain f̃ is unbounded and this implies that H̃
in (3) is not a perturbation of h. Yet the Hamiltonian vector field XH̃ can be considered as a perturbation of Xh , as

X f̃ = (∂I f̃ ,−∂θ f̃ , ∂y f̃ ,−∂x f̃ ) = (ε∂I f ,−ε∂θ f , ελ,−ε∂t f ), and so X f̃ is bounded (by a Cauchy estimate) and small on the

domain D̃r/2,s/2, for instance. As a consequence, even when h is convex, one cannot use preservation of energy arguments
as it is the case in [9,13,7], and in general one has to use a perturbation theory that deals only with vector fields: the
proofs in [2] and [1] accommodate both requirements. Now the analytic part of [2] and [1] goes exactly the same way
for (3), by simply considering x and y as “dummy” variables: given an integer parameter m � 1 which will be determined
(by the geometric part of the proof) in terms of ε, on suitable domains resonant normal forms with a remainder of size
bounded by a constant times ελe−m are constructed (note that the size of the perturbation X f̃ is of order εmin{1,λ} , but its

“effective” size is just of order ε, and so m will be determined in terms of ε and not ελ; ελ just enters the pre-factor in the
exponential and it can be proved that it will not affect the radius of confinement with suitable choices of ε0 and c3). The
geometric part of [2] and [1] also goes exactly the same way since the time of escape (of the domain) of the degenerate
variables x and y is infinite (as the domain is unbounded in these directions), m is eventually chosen proportional to ε−a ,
the radius of confinement is chosen proportional to εb and the stability time is proven to be at least a constant times e−m .

Now let us add two remarks on the statement of Theorem 2.1. First, the exponents a and b are the same as in (2) when
the perturbation is time independent. It is reasonable to expect that if h is convex, then a = b = (2n)−1 in Theorem 2.1,
but we already explained that we cannot use preservation of energy arguments and so we cannot reach these values: the
problem actually reduces to the problem of finding realistic values of a and b in the general steep case, which is still open.
Then, using [2] and [1], the statement of Theorem 2.1 can be generalized in two ways: using [2] the statement holds true
for the much wider class of Diophantine steep functions introduced by Niederman (which is a prevalent class of functions),
using [1] the statement holds true for α-Gevrey Hamiltonians for α � 1 (with exp(c3ε

−a) replaced by exp(c3ε
−α−1a), recall

that 1-Gevrey is real-analytic) and for Ck Hamiltonians, k � n + 1 (with exp(c3ε
−a) replaced by c3ε

−k∗a , with k∗ the largest
integer l � 1 such that k � ln +1).

3. An application

Now we come back to the problem studied in [4], and more generally we consider, for an integer p � 2,

G(θ, I, t) = hp(I) + V (θ, t), (θ, I, t) ∈ T
n ×R

n ×R, hp(I) = I p
1 + · · · + I p

n .

The case p = 2 corresponds to [4] and h2 is convex; in general, the function hp is not convex, but it is steep. The function
V is assumed to be real-analytic, defined on Ds = {(θ, t) ∈ (Cn/Zn) × C | |(Im(θ1), . . . , Im(θn)| < s, |Im(t)| < s}, and it is
assumed that |V (θ, t)| � 1 for all (θ, t) ∈Ds .

Theorem 3.1. Under the previous assumptions, there exist positive constants R0, c1, c2, c3 that depend on n, p, s, and positive con-
stants a′,b′ that depend only on n, p, such that if R � R0 , for all solutions (θ(t), I(t)) of the Hamiltonian system defined by G, if
I(0) ∈ B R , then the estimate |I(t) − I(0)| � c1 R1−b′

holds true for all time |t|� c2 R1−p exp(c3 Ra′
).

The proof is a direct application of Theorem 2.1. Indeed, for R > 0, consider the scalings:
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I = R I ′, θ = θ ′, G = R p G ′, t = R1−pt′.
Then the Hamiltonian G(θ, I, t), for (θ, t, I) ∈Ds × B2R , is equivalent to the Hamiltonian G ′(θ ′, I ′, t′), for (θ ′, t′, I ′) ∈Ds × B2,
where G ′(θ ′, I ′, t′) = hp(I ′) + R−p V (θ ′, R1−pt′). Hence we can apply Theorem 2.1 to the Hamiltonian G ′ , with ε = R−p ,
γ = (p − 1)p−1, ρ = 2 (in Theorem 2.1, constants depend on hp only through p): there exist positive constants ε0, c1, c2, c3,
that depend on n, p, s, and positive constants a,b that depend only on n, p, such that if ε � ε0, for all solutions (θ ′(t′), I ′(t′))
of the Hamiltonian system defined by G ′ , if I ′(0) ∈ B1, then |I ′(t′) − I ′(0)| � c1ε

b for all |t′| � c2 exp(c3ε
−a). Recalling that

ε = R−p , this means that if R � R0 = ε
−p−1

0 , for all I ′(0) ∈ B1 we have |I ′(t′) − I ′(0)| � c1 R−b′
for all |t′| � c2 exp(c3 Ra′

)

with b′ = pb and a′ = pa. Now scaling back to the original variables, for all I(0) ∈ B R , we have |I(t) − I(0)| � c1 R1−b′
for all

|t|� c2 R1−p exp(c3 Ra′
).

Now let us add some comments on the statement of Theorem 3.1. The estimate |I(t) − I(0)| � c1 R1−b′
is stronger than

|I(t)− I(0)| � R (as in the argument above, the estimate |I ′(t′)− I ′(0)| � c1ε
b is stronger than |I ′(t′)− I ′(0)| � 1) and hence

it is stronger than I(t) ∈ B2R if I(0) ∈ B R . Moreover, we have |t| � c2 exp(c′
3 Ra′

) � c2 R1−p exp(c3 Ra′
) by restricting c3 to a

smaller value c′
3 and enlarging R0 if necessary. So even for the convex case p = 2, our statement is more accurate than the

statement in [4]. In fact, for p = 2, we already explained that we believe that we can choose a = b = (2n)−1, in which case
the statement of Theorem 3.1 would read |I(t) − I(0)| � c1 R1−n−1

for all |t| � c2 R−1 exp(c3 Rn−1
), which would be in perfect

agreement with the much simpler autonomous case V (θ, t) = V (θ) described in [13].
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