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Iakovos Androulidakis and Georges Skandalis have defined a holonomy groupoid for any
singular foliation. This groupoid, whose topology is usually quite bad, is the starting point
for the study of longitudinal pseudodifferential calculus on such foliation and its associated
index theory. These studies can be highly simplified under the assumption of the holonomy
groupoid being longitudinally smooth. In this note, we rephrase the period bounding
lemma that asserts that a vector field on a compact manifold admits a strictly positive
lower bound for its periodic orbits in order to prove that the holonomy groupoid is always
longitudinally smooth.

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Iakovos Androulidakis et Georges Skandalis ont défini un groupoïde d’holonomie pour tout
feuilletage singulier. Ce groupoïde, dont la topologie est généralement assez singulière, est
le point de départ d’un calcul pseudodifferentiel longitudinal ainsi que d’une théorie de
l’indice pour de tels feuilletages. Ces travaux sont grandement simplifiés sous l’hypothèse
de différentiabilité longitudinale du groupoïde d’holonomie. Dans cette note, nous réinter-
prétons le period bounding lemma pour montrer que le groupoïde d’holonomie est toujours
longitudinalement lisse.

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Around the period bounding lemma

Recall that the period bounding lemma asserts that given a vector field with compact support on a manifold, there is a
positive lower bound for the prime periods of periodic orbits (which are not critical points) of the vector field. We will say
that the period of a non-periodic curve on a manifold is +∞. Then we have precisely:

Lemma 1.1 (Period bounding lemma [1,6]). If X is a Cr tangent vector field with compact support on a Cr manifold M with r � 2,
there is a real number η > 0 such that for any x in M, either X(x) = 0 or the (prime) period of the integral curve of X passing through
x is τx > η.

From now on, M is a smooth manifold, Γ ∞
c (T M) is the C∞(M)-module of compactly supported smooth tangent vector

fields on M .

E-mail address: claire.debord@math.univ-bpclermont.fr.
URL: http://math.univ-bpclermont.fr/~debord.
1631-073X/$ – see front matter © 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
http://dx.doi.org/10.1016/j.crma.2013.07.025

http://dx.doi.org/10.1016/j.crma.2013.07.025
http://www.ScienceDirect.com/
http://www.sciencedirect.com
mailto:claire.debord@math.univ-bpclermont.fr
http://math.univ-bpclermont.fr/~debord
http://dx.doi.org/10.1016/j.crma.2013.07.025
http://crossmark.crossref.org/dialog/?doi=10.1016/j.crma.2013.07.025&domain=pdf


614 C. Debord / C. R. Acad. Sci. Paris, Ser. I 351 (2013) 613–616
Let n ∈N and X := (Xi)i∈�1,n� be a family of elements in Γ ∞
c (T M). We denote by E the submodule of Γ ∞

c (T M) spanned
by X . When x belongs to M , we let Ix := { f ∈ C∞(M) | f (x) = 0} and we consider the quotient linear space Ex = E/IxE . If
X belongs to E we will denote by [X]x its image in Ex .

For any ξ = (ξi)i∈�1,n� ∈ R
n , we define the tangent vector field Xξ := ∑n

i=1 ξi Xi and we denote by Ψ s
ξ its flow at time s.

We consider the submersion rX : M ×R
n → M; (x, ξ) �→ Ψ 1

ξ (x).

Proposition 1.1. If the family Xx := ([Xi]x)i∈�1,n� is a basis of Ex, there is a real number η > 0 such that if (Id,h) : M → M ×R
n is a

smooth local section of rX , either ‖h(x)‖ � η or h(x) = (x,0).

Proof. We choose a real number λ > 0 and we let Bλ := {t ∈ R
n; ‖t‖ < λ} be the open ball of radius λ and Sλ := {t ∈

R
n; ‖t‖ = λ} the sphere.

Let Zλ be the smooth tangent vector field on M × Sλ given by Zλ(y, t) = (Xt(y),0). According to the period bounding
lemma, there is a real number ηλ > 0 such that for any (y, t) ∈ M × Sλ , for all y ∈ M either Zλ(y, t) = 0 or the period
of the integral curve of Zλ passing through (y, t) is τ(y,t) > ηλ . In other words, using that Ψ s

t = Ψ 1
st , either Xt(y) = 0 or

rX (y, st) = Ψ s
t (y) �= y for any s ∈ ]0, ηλ].

Choose λ = 1, let η = η1 and suppose that h = (hi)i∈�1,n� : M → R
n is a smooth map such that rX (y,h(y)) = y. If

‖h(x)‖ < η, the set V = h−1(Bη) is an open neighborhood of x on which Xh(y)(y) = 0. It follows that X := ∑n
i=1 hi Xi , which

belongs to E , is equal to 0 on V . Looking at the image of X in Ex , we get:

[0]x = [X]x =
[

n∑
i=1

hi Xi

]
x

=
n∑

i=1

hi(x)[Xi]x.

Since the family Xx is a basis of Ex , we deduce that hi(x) = 0 for any i ∈ �1,n�. �
2. About the longitudinal smoothness of the holonomy groupoid

As previously, M is a smooth manifold. A singular foliation F on M is a locally finitely generated submodule of Γ ∞
c (T M),

stable under the Lie bracket. We first recall briefly the construction of Iakovos Androulidakis and Georges Skandalis [2].

2.1. The holonomy groupoid of a singular foliation [2]

A bi-submersion of F is the data of (N, rN , sN) where N is a smooth manifold, rN , sN : N → M are smooth submersions
such that1:

r−1
N (F) = s−1

N (F) and s−1
N (F) = C∞

c (N;ker dsN) + C∞
c (N;ker drN).

The inverse of (N, rN , sN ) is (N, sN , rN ) and if (T , rT , sT ) is another bi-submersion for F the composition is given by
(N, rN , sN)◦(T , rT , sT ) := (N ×sN ,rT T , rN ◦ pN , sT ◦ pT ), where pN and pT are the natural projections respectively of N ×sN ,rT T
on N and on T .

A morphism from (N, rN , sN) to (T , rT , sT ) is a smooth map h : N → T such that sT ◦ h = sN and rT ◦ h = rN and it is local
when it is defined only on an open subset of N .

Finally, a bi-submersion can be restricted: if U is an open subset of N , (U , rU , sU ) is again a bi-submersion, where rU
and sU are the restriction of rN and sN to U .

For x in M , we define the fiber of F at x to be the quotient Fx = F/IxF . Let X = (Xi)i∈�1,n� ∈ Fn be such that
Xx = ([Xi]x)i∈�1,n� is a basis of Fx . As previously, for any ξ = (ξi)i∈�1,n� ∈ R

n , we consider the vector field Xξ := ∑n
i=1 ξi Xi

and we denote by Ψ s
ξ its flow at time s. We consider the two smooth submersions from M ×R

n to M:

(sX , rX ) : M ×R
n −→ M × M; (x, ξ) �→ (

x,Ψ 1
ξ (x)

)
.

Proposition 2.1. (Cf. Propositions 2.10 and 3.11 of [2].)

(1) One can find an open neighborhood W of (x,0) in M ×R
n such that (W , rW , sW ) is a bi-submersion, where the map rW and sW

are the restriction to W of the maps rX and sX defined above. Such a bi-submersion is called a path holonomy bi-submersion
minimal at x.

(2) Let (N, rN , sN ) be a bi-submersion, γ in N with sN (γ ) = rN (γ ) = x and suppose that there exists a smooth local section σ of
both rN and sN defined on a neighborhood of x in M such that σ(x) = γ . There exists a local morphism of bi-submersions around
γ from N to W sending γ on (x,0). Such a morphism is necessarily a submersion at γ .

1 If h : N → M is a smooth submersion h−1(F) is the vector space generated by tangent vector fields f Z where f ∈ C∞
c (N) and Z is a smooth tangent

vector field on N , which is projectable by dh and such that dh(Z) belongs to F .
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Notice that any restriction around (x,0) of a path holonomy bi-submersion minimal at x is again a path holonomy
bi-submersion minimal at x.

The path holonomy atlas U = (Ui, ri, si)i∈I is the family of bi-submersions of F generated by the path holonomy bi-
submersions and stable under restrictions, compositions and inverses of bi-submersions.

The holonomy groupoid of F is the quotient G(U) = ⊔
i∈I Ui/∼ where Ui 
 u ∼ v ∈ U j if and only if there is a local

morphism from Ui to U j sending u on v . When (U , rU , sU ) belongs to U and u ∈ U , let us denote by [U , rU , sU ]u its image
in G(U). The structural morphisms of G(U) are given by:

source s
([U , rU , sU ]u

) = sU (u), range r
([U , rU , sU ]u

) = rU (u), inverse [U , rU , sU ]−1
u = [U , sU , rU ]u,

product [U , rU , sU ]u · [V , rV , sV ]v = [U ×sU ,rV V , rU ◦ pU , sV ◦ pV ](u,v) when sU (u) = rV (v),

units x ∈ M �→ [W , rW , sW ](x,0), where W is any path holonomy bi-submersion minimal at x.

The holonomy groupoid is endowed with the quotient topology, which is quite bad; in particular, the dimension of the
fibers may change. We will say that it is longitudinally smooth over x ∈ M when the induced topology on G(U)x := s−1(x)
makes G(U)x into a smooth manifold. According to [2], a necessary and sufficient condition for G(U)x to be smooth is
that there is a path holonomy bi-submersion minimal at x, (W , rW , sW ) such that the restriction of the quotient map
W x := s−1

W (x) → G(U) is injective. We now show that as a consequence of Proposition 1.1 this is always true.

2.2. Longitudinal smoothness of G(U)

The following lemma is a direct consequence of Proposition 2.1.

Lemma 2.1. For x ∈ M and W = (W , r, s) a path holonomy bi-submersion minimal at x, there is a restriction W̃ = (W̃ , r, s) of W
around (x,0) and a morphism of bi-submersion F : W̃−1 ◦ W̃ → W such that F (x,0; x,0) = (x,0) and the map T : W̃−1 ◦ W̃ →
W ×R

n, (y, t; z, ξ) �→ (F (y, t, z, ξ), t) is injective.

Proof. Recall that the bi-submersion W−1 ◦W is (W ×r W , s◦ p1, s◦ p2), where pi , i = 1,2, are the two canonical projections
of W ×r W on W .

According to Proposition 2.1, one can find a local morphism of bi-submersion F : W−1 ◦ W → W such that F (x,0; x,0) =
(x,0), which is a submersion. Consider the morphism j : W → W−1 ◦ W given by the embedding (z, ξ) �→ (r(z, ξ), 0; z, ξ).
Then F ◦ j is again a local morphism of bi-submersion around (x,0) with values in a bi-submersion minimal at x, thus it
remains a submersion at (x,0). So F restricted to W 0 := {(y,0; z, ξ) ∈ W ×r W } is a submersion at (x,0; x,0). It follows
that the map T : W ×r W → W ×R

n, (y, t; z, ξ) �→ (F (y, t; z, ξ), t) is a local diffeomorphism at (x,0; x,0). �
Proposition 2.2. The holonomy groupoid of any singular foliation is longitudinally smooth.

Proof. According to Proposition 1.1 and Lemma 2.1, we can find λ > 0, an open neighborhood O of x in M and an open
neighborhood Ŵ of (x,0) in W such that if W̃ := O × Bλ then W̃ ⊂ Ŵ and:

(i) if σ = (Id,h) : M → M ×R
n is a smooth local section of r with values in Ŵ then σ(x) = (x,0);

(ii) F is defined on W̃ ×r W̃ with values in Ŵ and T is injective on W̃ ×r W̃ .

Take a local morphism h : W̃ → W̃ and t ∈ Bλ . Then y ∈ O �→ F (y, t;h(y, t)) is a smooth local section of both s and r with
values in Ŵ . Thus by (i) F (x, t;h(x, t)) = (x,0), whence T (x, t;h(x, t)) = (x,0; t) = T (x, t; x, t). Now, by injectivity of T , we
get: h(x, t) = (x, t). In other words, [W̃ , r, s](x,t) = [W̃ , r, s](x,ξ) if and only if ξ = t . �
2.3. The transitive Lie algebroid

For any leaf L of the foliation, AL := ⋃
x∈L Fx inherits from F a structure of transitive Lie algebroid over L. We let G(U)|L

be the restriction of the groupoid G(U) over L: G(U)|L = s−1(L) = r−1(L).

Corollary 2.2. For any leaf L, G(U)|L is a smooth groupoid that integrates AL .

Various consequences of this result may be developed in a forthcoming paper. In particular, it gives information about
the Crainic–Fernandes obstruction and equivalently the Mackenzie criteria for integrability of transitive Lie algebroids arising
in this way [4,5]. Deeply related to these questions is a recent work of Iakovos Androulidakis and Marco Zambon [3], where
they define, for each leaf of a singular foliation, an essential isotropy group in order to study the normal form of a singular
foliation around a compact leaf. Moreover, they explain how the integrability of AL (in the sense of Crainic and Fernandes) is
related with the discreteness of the essential isotropy group and they show that these essential isotropy groups are discrete
if and only if the holonomy groupoid of the foliation is longitudinally smooth.
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