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This paper deals with delay-differential algebraic equations, a large class of linear and
finite-memory functional differential equations. We introduce several representations of
delay operators that provide a simple definition for the concept of solutions of such
systems. Then we study exponential solutions and prove that the rightmost zeros of a
system characteristic function determine its growth bound.
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r é s u m é

Cet article traite des équations algébro-différentielles à retards, un large sous-ensemble
des équations différentielles fonctionnelles linéaires à mémoire finie. Nous introduisons
différentes représentations des opérateurs de retard, qui fournissent une définition simple
du concept de solution de tels systèmes. Ensuite, nous étudions les solutions exponentielles
et prouvons que les zéros les plus à droite de la fonction caractéristique d’un système
déterminent son taux de croissance.

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Delay-differential algebraic equations (DDAE) are a class of functional differential equations (FDE) whose variables are
connected through integrators and finite-memory delay operators. Such a system of equations, with variables x ∈R

n , y ∈ R
m

and a finite memory length r, has the structure:∣∣∣∣∣
ẋ(t) = Axt + B yt

y(t) = Cxt + D yt
(1)

where zt refers to the memory of the variable z at time t:

dom zt = [−r,0] and ∀θ ∈ [−r,0], zt(θ) = z(t + θ) (2)

and the symbols A, B , C , D denote delay operators:[
A B
C D

]
: C

([−r,0],Cn+m) →C
n+m, linear and bounded. (3)
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This class of systems has been already considered in [1,2,4,10–12], but most of the literature has been focused on
some of its subclasses: equations of retarded type, neutral type and difference equations. Nonetheless, the general model
is important: it is required in the modelling of some physical phenomena such as lossless propagation (see [11] and the
references therein) and in the control of dead-time systems when standard methods such as finite-spectrum assignment [9]
are used.

A classic stability criterion determines the growth bound of a DDAE system from the location of the rightmost zeros of
its characteristic function. The validity of this criterion has already been established with several methods under various
restrictive assumptions: for systems of retarded type, for systems of neutral type, and difference equations whose difference
operator combines only discrete and distributed delays [7] or satisfies a “jump” assumption [6], and for DDAE with discrete
delays and stable difference operators [5].

We demonstrate in this paper that a single method, that combines the use of the Gearhart–Prüss theorem with bounds
for the characteristic matrix inverse, established by complex analysis, can be used to prove this criterion in all these special
cases. Actually, we require only the DDAE system to have a strictly causal difference operator, an assumption already used
to ensure the well-posedness of the system. To the best knowledge of the author, this general result was not available.

Matrix-valued measures provide a concrete representation of delay operators: any linear bounded operator L :
C([−r,0],C j) → C

i corresponds to a unique countably additive function on the bounded Borel subsets of R, supported
on [−r,0], with values in C

i× j . This alternate representation – that we still denote by L – is related to the initial operator
by:

Lφ =
∫

dL φ :=
∑

l

[∫
φk dLlk

]
el (4)

where (e1, . . . , ei) denotes the canonical basis of Ci . Let L∗ be the measure obtained by symmetry around t = 0 of L, such
that for any bounded Borel set B , L∗(B) = L(−B) and let ∗ be the convolution between time-dependent locally integrable
functions – or more generally measures – of left-sided bounded support. The convolution of two scalar, vector or matrix-
valued measures of compatible dimensions is defined as the combination of scalar convolution and linear algebra product;
for example, for two matrix-valued measures A and B , A ∗ B is the matrix-valued measure such that (A ∗ B)i j := ∑

k Aik ∗ Bkj .
We also implicitly extend functions defined on a subset of R by zero outside of their domain. With these conventions, for
any continuous function z defined on [−r,+∞), we have ∀t > 0, Lzt = (L∗ ∗ z)(t). As the right-hand side of this equation is
still properly defined – as a locally integrable function of t – if z is merely locally integrable, we may rewrite Eq. (1) as a
convolution equation.

Let e be the Heaviside function. We say that a pair of locally integrable functions (x, y), defined on [−r,+∞), with
values in C

n+m , is a (locally integrable) solution of (1) if there is an f ∈C
n such that:[

x
y

]
(t) =

[
e ∗ A∗ e ∗ B∗

C∗ D∗
]

∗
[

x
y

]
(t) +

[
f
0

]
for a.e. t > 0. (5)

We assume in the sequel that the difference operator D is strictly causal, that is D({0}) = 0. This condition ensures that this
system of equations defines a well-posed initial value problem in the Hilbert product space X = C

n × L2([−r,0],Cn+m), see
[1,2,12]: given any (φ,χ,ψ) ∈ X , there is a unique solution (x, y) such that (x(0+), x0, y0) = (φ,χ,ψ) and the mapping
(t ∈ R+ �→ exp(At)) given by (x(t+), xt , yt) = exp(At)(φ,χ,ψ) for t � 0 is a strongly continuous semigroup on X .

2. Exponential solutions – characteristic matrix and resolvent operator

We denote by � the characteristic matrix of system (1), defined at any point s ∈ C by

�(s) =
[

sIn 0
0 Im

]
− L

[
A∗ B∗
C∗ D∗

]
(s) (6)

where L is the Laplace transform.
The determinant of the characteristic matrix – the characteristic function – and its adjugate both have a quasi-polynomial

structure:

det�(s) =
n∑

i=0

ci(s)si, adj�(s) =
n∑

i=0

Ci(s)si (7)

where the ci (resp. Ci ) are entire functions (resp. matrices of entire functions) bounded on any right-hand plane. Moreover,
the leading coefficient of the characteristic function is given by cn(s) = det �0(s), where �0 is the characteristic matrix of
the system y(t) = D yt . Lemma 2.1 establishes elementary properties of det�0 and Lemma 2.2 describes how the zeros of
det�0 and det� are connected.

For any real number σ , we denote by Pσ the open half-plane {s ∈ C | �(s) > σ } and for any positive η, we denote by
Zη the set of complex numbers whose distance to the zeros of det �0 it at most η:

Zη = {
s ∈C

∣∣ ∃z ∈C, det�0(z) = 0 ∧ |s − z|� η
}
. (8)
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Lemma 2.1 (Zero clusters and lower bound). Let σ ∈ R and ε > 0. There is an η > 0 such that any connected component Λ of the set
Zη is bounded and Λ ⊂ Pσ−ε if Λ ∩ Pσ = ∅. Moreover, for any η > 0, there is a κ > 0 such that |det �0| � κ on Pσ−ε − Zη .

Proof. Let Σm be the set of permutations of {1, . . . ,m} and

det∗ M =
∑

σ∈Σm

sgn(σ )M1,σ (1) ∗ · · · ∗ Mm,σ (m).

As �0(s) = Im − L D∗(s), det �0 = L μ where μ = det∗(δ0 Im − D∗). The complex measure μ is a sum of convolution
products of m complex measures supported on [0, r], hence it is supported on [0,mr]. Consequently, det �0 is an entire
function that satisfies the inequality:

∣∣det �0(s)
∣∣ � |μ|([0,mr]) max

(
1,exp

(−�(s)mr
))

. (9)

Since D({0}) = 0, we also have μ({0}) = 1, which yields:

lim�s→+∞ det�0(s) = 1. (10)

The function z �→ det �0(iz) meets the assumptions of [8, th. VIII]. Thus, the number of distinct zeros N(ρ) of det �0
whose modulus is less than ρ is such that lim supρ→+∞ N(ρ)/ρ � 2mr/π . If there is an unbounded connected component
of Zη , there is a corresponding sequence (zn)n∈N of distinct zeros of det �0 such that, for any n ∈ N, |zn+1 − zn| � 2η, which
provides the density estimate lim supρ→+∞ N(ρ)/ρ � 1/2η. Consequently, if η < π/4mr, every connected component of Zη

is bounded.
The proof of the two remaining statements uses the same complex analysis argument. Consider a sequence sn of numbers

in Pσ−ε such that �sn → x ∈ R when n → +∞. From (9), it follows that the sequence of functions defined by fn(s) =
det�0(s + i�sn) is locally uniformly bounded on C. By Montel’s theorem, a subsequence converges locally uniformly to
an entire function f∞ , which by (10) is not identically zero. From Hurwitz’s theorem, it follows that for any sufficiently
small α > 0, there is an arbitrarily large integer n such that det �0 has m zeros in the open disk B(sn,α), where m is the
multiplicity of x if f∞(x) = 0, or 0 otherwise.

Consider a sequence Λn of bounded connected components of Z1/2n , defined for n sufficiently large, such that Λn ∩ Pσ =
∅ and Λn − Pσ−ε = ∅. For any such n and any α < ε , there is a yn ∈R such that the number of zeros of det�0 in the open
disk B(σ + iyn,α) is greater than nα−1. This contradicts the result of the previous paragraph for the sequence sn = σ + iyn .

Finally, if |det�0| has no positive lower bound on Pσ−ε − Zη , we can find in this set a sequence sn such that
det�0(sn) → 0 when n → +∞. By (10), the sequence sn can be selected such that �sn has a limit x ∈ R. As f∞(x) =
limn→+∞ fn(sn − i�sn) = 0, there is an integer n such that det �0 has at least one zero in B(sn, η), a contradiction with the
assumption that sn /∈ Zη . �
Lemma 2.2 (Characteristic function zeros). Let σ ∈R. If the function det �0 has an infinite number of zeros on Pσ , the function det�

has an infinite number of zeros on Pσ−ε for any ε > 0.

Proof. Suppose that det �0 has an infinite number of zeros on Pσ . Let η > 0 be such that any connected component Λ

of Zη that contains such a zero is bounded and is included in Pσ−ε (Lemma 2.1). The zeros of det�0 are isolated, hence
every Λ contains a finite number of zeros, and the collection of sets Λ is therefore infinite. It is also locally finite: for any
compact set K ⊂ C and any set Λ such that K ∩Λ = ∅, Λ contains a closed disk Bη of radius η such that K ∩ Bη = ∅, hence
Bη ⊂ K ′ = K + B(0, η) and only a finite number of such disjoint disks Bη may be contained in K ′ . Thus, for any ρ > 0, there
is a set Λ that does not intersect B(0,ρ).

The lower bound from Lemma 2.1 and the quasi-polynomial structure of det �0 provide the existence of a ρ0 > 0 such
that, if s ∈ Pσ−ε is not in Zη/2 and satisfies |s| > ρ0, then |det �(s)− sn det �0(s)| < |sn det �0(s)|. Let Λ0 be one of the sets
Λ that does not intersect B(0,ρ0). As Λ0 is included in Pσ−ε , the application of Rouché’s theorem to its boundary yields
the existence of at least one zero of det � in Pσ−ε . We may more generally define ρn+1 = sup{|s|, s ∈ Λn} and apply the
same argument to a set Λn+1 that does not intersect B(0,ρn+1) to prove the existence of an infinite sequence of zeros of
det� in Pσ−ε . �

The infinitesimal generator A of the DDAE semigroup is defined by A(φ,χ,ψ) = (Aχ + Bψ, χ̇, ψ̇) on the domain
{(φ,χ,ψ) ∈ C

n × W 1,2([−r,0],Cn+m) | χ(0) = φ, ψ(0) = Cχ + Dψ}, see [12]. The resolvent operator (sI −A)−1 exists iff
�(s)−1 exists: the resolvent set of A is:

ρ(A) = {
s ∈C,ker �(s) = {0}}. (11)

Moreover, for any real number σ , there are constants κσ and λσ such that:
∥∥(sI −A)−1

∥∥� κσ

∥∥�(s)−1
∥∥ + λσ if �s � σ and s ∈ ρ(A). (12)
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Let the growth bound ω0 of the DDAE system be the infimum of the real numbers ω for which there exists α > 0 such
that, for any initial condition (x(0+), x0, y0) ∈ X , the solution of the system satisfies:

∀t � 0,
∥∥(

x
(
t+)

, xt, yt
)∥∥

X � α exp(ωt)
∥∥(

x
(
0+)

, x0, y0
)∥∥

X . (13)

Theorem 2.3 (Growth bound). The growth bound of a DDAE system such that D({0}) = 0 is determined by the rightmost zeros of the
characteristic function and given by:

ω0 = sup
{�(s), s ∈C

∣∣ det�(s) = 0
}
. (14)

As a corollary, such a DDAE system is uniformly exponentially stable iff the set of zeros of its characteristic function is
on the left of – and at a positive distance from – the imaginary axis.

Proof. We use the Gearhart–Prüss theorem [3] to establish the result: we prove that for any σ > s(A), where s(A) is the
spectral bound of A, ‖(sI −A)−1‖ is bounded on Pσ ; this is achieved by combining inequality (12) with the derivation of
a bound for ‖�(s)−1‖ on Pσ .

The quasi-polynomial structure of the adjugate matrix yields on Pσ the estimate ‖adj �(s)‖� κ(1 + |s|n). From (11) we
deduce that det � has no zero on Pσ−ε for any ε > 0 such that s(A) < σ − ε and hence, by Lemma 2.2, det�0 has at
most a finite number of zeros on Pσ−ε/2 and therefore on Pσ . On Pσ and away from these zeros, |det�0| has a positive
lower bound κ ′ by Lemma 2.1. It follows from the quasi-polynomial structure of det � that |det�(s)| � κ ′′(1 + |s|n) for a
κ ′′ > 0, on Pσ except on a compact set K and by continuity, this estimate still holds on all of Pσ with a possibly smaller
κ ′′ . Finally, for any s ∈ Pσ , ‖�(s)−1‖ = ‖adj�(s)‖/| det �(s)| � κ/κ ′′ . �
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