

Contents lists available at ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

Differential Geometry

A Note on hypersurfaces of a Euclidean space *

Une Note sur les hypersurfaces des espaces euclidiens

Sharief Deshmukh

Department of Mathematics, College of Science, King Saud University, P. O. Box-2455, Riyadh 11451, Saudi Arabia

ARTICLE INFO

Article history: Received 23 March 2013 Accepted 3 September 2013 Available online 5 October 2013

Presented by the Editorial Board

ABSTRACT

In this short Note, we consider a compact and connected orientable hypersurface *M* of the Euclidean space R^{n+1} with non-negative support function and Minkowski's integrand σ , and show that the mean curvature function α is the solution of the Poisson equation $\Delta \varphi = \sigma$ if and only if *M* is isometric to *n*-sphere $S^n(c)$ of constant curvature *c*. A similar result is proved for a hypersurface with scalar curvature satisfying the Poisson equation $\Delta \varphi = \sigma$.

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

RÉSUMÉ

Dans cette courte Note, nous considérons une hypersurface compacte, connexe orientable M de l'espace euclidien R^{n+1} , de fonction support positive ou nulle et d'intégrande de Minkowski σ . Nous montrons que la fonction courbure moyenne α est la solution de l'équation de Poisson $\Delta \varphi = \sigma$ si et seulement si M est isométrique à une sphère $S^n(c)$ de dimension n et courbure constante égale à c. Un résultat similaire est démontré pour une hypersurface de courbure scalaire satisfaisant l'équation de Poisson $\Delta \varphi = \sigma$.

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The importance of the Poisson equation in Physics is well known; it plays a fundamental role in Electrostatics, Fluid motion, and many other areas. On a compact Riemannian manifold (M, g), it is known that the Poisson equation $\Delta \varphi = \rho$ (Δ is the Laplacian operator, ρ is known function, φ is unknown) has a unique solution up to addition of a constant (cf. [1]). It is obvious that the function ρ appearing in the Poisson equation should have an integral equal to 0. Given a compact orientable immersed hypersurface M of the Euclidean space R^{n+1} with support function $\rho = \langle \psi, N \rangle$ and mean curvature function α , the Minkowski integrand $\sigma = 1 + \rho \alpha$ has an integral equal to zero, where $\psi : M \to R^{n+1}$ is the immersion, N is the unit normal and \langle, \rangle is the Euclidean metric on R^{n+1} . Therefore, it is natural to consider the Poisson equation $\Delta \varphi = \sigma$ on the compact orientable hypersurface M of the Euclidean space R^{n+1} . Characterizing spheres among compact hypersurfaces is one of the fascinating areas in geometry and the use of partial differential equations in characterizing spheres has been recorded in (cf. [2,3]). For the hypersphere $S^n(c)$ in the Euclidean space R^{n+1} , the support function is a positive constant, the Minkowski integrand $\sigma = 0$ and the mean curvature α , being a constant, satisfies the Poisson equation $\Delta \varphi = \sigma$. This raises a question: is a compact connected orientable hypersurface of the Euclidean space R^{n+1} , with non-negative support

^{*} This work is sponsored by the Distinguished Scientist Fellowship Program (DSFP), King Saud University, Riyadh, Saudi Arabia. *E-mail address:* shariefd@ksu.edu.sa.

¹⁶³¹⁻⁰⁷³X/\$ – see front matter © 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. http://dx.doi.org/10.1016/j.crma.2013.09.003

function and the mean curvature function α satisfying the Poisson equation $\Delta \varphi = \sigma$, necessarily isometric to a sphere $S^n(c)$? In this paper, we answer this question and prove the following:

Theorem 1. Let *M* be an orientable compact and connected hypersurface with non-negative support function of the Euclidean space R^{n+1} . The mean curvature function α of the hypersurface *M* is the solution of the Poisson equation $\Delta \varphi = \sigma$ (σ is the Minkowski integrand) if and only if *M* is isometric to the n-sphere $S^n(c)$ of constant curvature *c*.

Moreover, we also consider the compact and connected orientable hypersurface with certain Ricci curvatures nonnegative in the Euclidean space whose scalar curvature is bounded above by the constant $n(n-1)\lambda^{-1}$, where $\lambda = \sup \rho^2$ and show that the scalar curvature of this hypersurface satisfies the Poisson equation $\Delta \varphi = \sigma$ if and only if it is isometric to a sphere $S^n(c)$. Thus, we get another characterization of a sphere in the Euclidean space given by the following:

Theorem 2. Let *M* be an orientable compact and connected hypersurface of the Euclidean space \mathbb{R}^{n+1} with scalar curvature *S* bounded above by a constant $n(n-1)\lambda^{-1}$, where $\lambda = \sup \rho^2$, ρ being the support function. Then the Ricci curvature in the direction of the vector field ∇S is non-negative and the scalar curvature *S* is the solution of the Poisson equation $\Delta \varphi = \sigma$ (σ is the Minkowski integrand) if and only if *M* is isometric to the n-sphere $S^n(c)$ of constant curvature $c = \lambda^{-1}$.

2. Preliminaries

Let *M* be an immersed orientable hypersurface of the Euclidean space R^{n+1} with unit normal vector field *N* and shape operator *A*. If $\psi : M \to R^{n+1}$ is the immersion, we denote the induced metric on *M* by *g* and by \langle, \rangle the Euclidean metric on R^{n+1} , then we have:

$$\psi = \psi^T + \rho N, \tag{2.1}$$

where $\rho = \langle \psi, N \rangle$ is the support function of the hypersurface *M* and $\psi^T \in \mathfrak{X}(M)$ the Lie algebra of smooth vector fields on *M*. Taking covariant derivative in Eq. (2.1) with respect to $X \in \mathfrak{X}(M)$ and using Gauss and Weingarten formulas for a hypersurface, we get:

$$\nabla_{X}\psi^{T} = X + \rho AX, \quad \nabla \rho = -A(\psi^{T}), \ X \in \mathfrak{X}(M),$$
(2.2)

where $\nabla \rho$ is the gradient of the support function ρ . If the hypersurface *M* is compact, the Minkowski formula for the hypersurface is:

$$\int_{M} (1 + \rho \alpha) = 0, \tag{2.3}$$

where $\alpha = n^{-1}$ Tr A is the mean curvature of the hypersurface. The shape operator A of the hypersurface satisfies the Codazzi equation:

$$(\nabla A)(X, Y) = (\nabla A)(Y, X), \quad X, Y \in \mathfrak{X}(M),$$

where the covariant derivative $(\nabla A)(X, Y) = \nabla_X AY - A(\nabla_X Y)$. Using local orthonormal frame $\{e_1, \ldots, e_n\}$ on the hypersurface and the above equation, we see that the gradient $\nabla \alpha$ of the mean curvature is given by:

$$n\nabla\alpha = \sum (\nabla A)(e_i, e_i).$$
(2.4)

The scalar curvature *S* of the hypersurface is given by:

$$S = n^2 \alpha^2 - \|A\|^2.$$
(2.5)

The Minkowski integrand $\sigma = 1 + \rho \alpha$ in Eq. (2.3) gives rise to the Poisson equation:

$$\Delta \varphi = \sigma \tag{2.6}$$

on the hypersurface M. The following result is known for the Poisson equation on a compact Riemannian manifold (M, g).

Theorem 2.1. (See [1].) On a closed Riemannian manifold (M, g), if σ is a smooth function of integral 0, then there is a smooth solution of the equation $\Delta \varphi = \sigma$, unique up to the addition of a constant.

If φ is a solution of the Poisson equation (2.6), then using:

div $(\sigma \nabla \varphi) = g(\nabla \sigma, \nabla \varphi) + \sigma^2$ and $\frac{1}{2} \Delta \varphi^2 = \varphi \sigma + \|\nabla \varphi\|^2$,

we get the following.

633

Lemma 2.2. Let *M* be a compact orientable hypersurface of the Euclidean space \mathbb{R}^{n+1} with Minkowski's integrand σ . Then the solution φ of the Poisson equation $\Delta \varphi = \sigma$ satisfies:

$$\int_{M} \left(g(\nabla \sigma, \nabla \varphi) + \sigma^2 \right) = 0 \quad and \quad \int_{M} \left(\varphi \sigma + \| \nabla \varphi \|^2 \right) = 0.$$

3. Proof of Theorem 1

Suppose the mean curvature α is the solution of the Poisson equation $\Delta \varphi = \sigma$ on the hypersurface *M*. Define a smooth function *f* on *M* by:

$$f = \frac{1}{2n} \|\psi\|^2.$$
(3.1)

Then the gradient of this function is given by $\nabla f = n^{-1}\psi^T$, which together with Eq. (2.2) gives $\Delta f = (1 + \rho\alpha) = \sigma$, that is, f is a solution of the Poisson equation $\Delta \varphi = \sigma$. Hence by Theorem 2.1, we have $\alpha = f + c$, for a constant c and consequently, we get:

$$n\nabla\alpha = \psi^T. \tag{3.2}$$

We denote by A_{α} the Hessian operator of the mean curvature function α . Then Eqs. (2.2) and (3.2) give:

$$nA_{\alpha} = I + \rho A,$$

and consequently, we have:

$$n\operatorname{Tr}(AA_{\alpha}) = n\alpha + \rho \|A\|^2.$$
(3.3)

We use Eq. (2.4) to compute the divergence of the vector field $A(\nabla \alpha)$:

$$\operatorname{div}(A(\nabla \alpha)) = \operatorname{Tr}(AA_{\alpha}) + n \|\nabla \alpha\|^2.$$

Integrating the above equation and using Eq. (3.3), we get:

$$\int_{M} \left(n\alpha + \rho \|A\|^2 + n^2 \|\nabla \alpha\|^2 \right) = 0,$$

which together with Lemma 2.2 and $\sigma = 1 + \rho \alpha$ gives:

$$\int_{M} \left(\rho \left(\|A\|^2 - n\alpha^2 \right) + n(n-1) \|\nabla \alpha\|^2 \right) = 0.$$

Since the support function ρ is non-negative and $||A||^2 \ge n\alpha^2$, the above equation gives:

$$\rho(\|A\|^2 - n\alpha^2) = 0 \quad \text{and} \quad \nabla \alpha = 0.$$

Note that $\rho = 0$ gives a contradiction of the Minkowski formula (2.3). Thus we have $||A||^2 - n\alpha^2 = 0$ and α is a constant. However, we know that $||A||^2 \ge n\alpha^2$ and the equality holds if and only if $A = \alpha I$. Hence, M is totally umbilical hypersurface, which, being compact and connected, is isometric to the *n*-sphere $S^n(c)$ of constant curvature $c = \alpha^2$. The converse is trivial.

4. Proof of Theorem 2

Suppose *M* be a compact and connected orientable hypersurface of the Euclidean space R^{n+1} satisfying the hypothesis of the theorem. Then the scalar curvature *S* satisfies the Poisson equation $\Delta \varphi = \sigma$ and, as we have seen that the function *f* defined in Eq. (3.1) satisfies the same Poisson equitation, by Theorem 2.1 we have S = f + c for a constant *c*, which gives:

$$n\nabla S = \nabla f = \psi^T. \tag{4.1}$$

If A_S denotes the Hessian operator of the scalar curvature function *S*, the above equation together with Eq. (2.2) implies that:

$$nA_{\rm S} = I + \rho A. \tag{4.2}$$

The above equation and the Minkowski formula (2.3) give:

$$\int_{M} \|A_{S}\|^{2} = \frac{1}{n^{2}} \int_{M} (\rho^{2} \|A\|^{2} - n).$$
(4.3)

Also, we have $(\Delta S)^2 = \sigma^2 = 1 + 2\rho\alpha + \rho^2\alpha^2$, which on integration gives:

$$\int_{M} (\Delta S)^{2} = \int_{M} (\rho^{2} \alpha^{2} - 1),$$
(4.4)

where we have used Eq. (2.3). Now, using Eqs. (2.5), (4.3) and (4.4) in the Bochner formula:

$$\int_{M} \left(\operatorname{Ric}(\nabla S, \nabla S) + \|A_{S}\|^{2} - (\Delta S)^{2} \right) = 0,$$

we get:

$$\int_{M} \left(Ric(\nabla S, \nabla S) + \frac{1}{n^2} (n(n-1) - \rho^2 S) \right) = 0.$$
(4.5)

Note that the constant $\lambda = \sup \rho^2 > 0$, for if $\lambda = 0$, we shall get $\rho^2 = 0$ and it will give a contradiction of the Minkowski formula. The bound $S \leq n(n-1)\lambda^{-1}$ on the scalar curvature gives, $\rho^2 S \leq n(n-1)\rho^2\lambda^{-1} \leq n(n-1)$. Since the Ricci curvature in the direction of the vector field ∇S is non-negative, Eq. (4.5) gives:

$$Ric(\nabla S, \nabla S) = 0 \quad \text{and} \quad \rho^2 S = n(n-1), \tag{4.6}$$

and the inequality $\rho^2 S \leq n(n-1)\rho^2 \lambda^{-1} \leq n(n-1)$ gives $\rho^2 = \lambda^{-1}$, that is ρ is a constant. Hence, the second equation in (4.6) gives that the scalar curvature *S* is a constant. Now, using this in Eq. (4.2), we get $A = \rho^{-1}I = \lambda^{-\frac{1}{2}}I$, which proves that *M* is isometric to $S^n(c)$ of constant curvature $c = \lambda^{-1}$. The converse is trivial.

References

- [1] S. Donaldson, Geometric analysis lecture notes, available online at http://www2.imperial.ac.uk/~skdona/.
- [2] P. Li, Lecture Notes on Geometric Analysis, Global Analysis Research Center, Seoul National University, Korea, 1993.
- [3] P. Li, Curvature and function theory on Riemannian manifolds, in: Surveys in Differential Geometry: Papers Dedicated to Atiyah, Bott, Hirzebruch, and Singer, vol. VII, International Press, 2000, pp. 375–432.