Harmonic Analysis

Measures with uniformly discrete support and spectrum ${ }^{\text {* }}$

CrossMark

Mesures à support et spectre uniformément discrets

Nir Lev ${ }^{\text {a }}$, Alexander Olevskii ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Mathematics, Bar-Ilan University, Ramat-Gan 52900, Israel
${ }^{\text {b }}$ School of Mathematical Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel

A R T I C L E I N F O

Article history:
Received 26 June 2013
Accepted 3 September 2013
Available online 10 October 2013
Presented by Jean-Pierre Kahane

Abstract

We characterize the measures on \mathbb{R} which have both their support and spectrum uniformly discrete. A similar result is obtained in \mathbb{R}^{n} under a stronger discreteness restriction.

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

RÉS U M É

Nous caractérisons les mesures sur \mathbb{R} ayant toutes les deux leurs support et spectre uniformément discrets. Un résultat similaire est obtenu dans \mathbb{R}^{n} sous une restriction de discrétion plus forte.
© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction. Results

1.1. A set $\Lambda \subset \mathbb{R}^{n}$ is called uniformly discrete (u.d.) if

$$
\mathrm{d}(\Lambda):=\inf _{\lambda, \lambda^{\prime} \in \Lambda, \lambda \neq \lambda^{\prime}}\left|\lambda-\lambda^{\prime}\right|>0
$$

We consider a measure μ on \mathbb{R}^{n} supported on a u.d. set Λ :

$$
\begin{equation*}
\mu=\sum_{\lambda \in \Lambda} \mu(\lambda) \delta_{\lambda}, \quad \mu(\lambda) \neq 0, \mathrm{~d}(\Lambda)>0 \tag{1}
\end{equation*}
$$

Assume that μ is a temperate distribution, and that its Fourier transform

$$
\hat{\mu}(x):=\sum_{\lambda \in \Lambda} \mu(\lambda) \mathrm{e}^{-2 \pi \mathrm{i}\langle\lambda, x\rangle}
$$

(in the sense of distributions) is also a measure, supported by a u.d. set S :

$$
\begin{equation*}
\hat{\mu}=\sum_{s \in S} \hat{\mu}(s) \delta_{s}, \quad \hat{\mu}(s) \neq 0, \mathrm{~d}(S)>0 \tag{2}
\end{equation*}
$$

The set S is the spectrum of the measure μ.

[^0]The classical Poisson summation formula provides an example of such a situation:

$$
\begin{equation*}
\mu=\sum_{k \in \mathbb{Z}^{n}} \delta_{k} . \tag{3}
\end{equation*}
$$

In this case $\hat{\mu}=\mu$.
Kahane and Mandelbrojt [4] studied the problem (in one dimension), which other summation formulas of Poisson type may exist.

There is a conjecture (see, e.g., [7]) that (3) is essentially the only possible example of a measure μ satisfying (1) and (2). Namely, that the support of such a measure is contained in a finite union of translates of a (full-rank) lattice.

Under the assumption that all the masses $\mu(\lambda)$ are equal, or take only finitely many different values, such results were proved in [8, p. 25], [2], [5]. The proofs are based on the Cohen-Helson theorem on idempotent measures. See also [1].

The aim of the present note is to sketch a proof of the conjecture above. For $n=1$ it is obtained in all generality, while for $n>1$ under a stronger "quasi-regularity" condition on the spectrum.

Theorem 1. Let μ be a measure on \mathbb{R} satisfying (1) and (2). Then the support Λ is contained in a finite union of translates of a certain lattice. The same is true for S (with the dual lattice).

Theorem 2. Let μ be a measure on $\mathbb{R}^{n}, n>1$, satisfying (1) and (2), and such that $S-S$ is a u.d. set. Then the conclusion of Theorem 1 holds.

The following proposition completes the results, describing the explicit form of μ.
Theorem 3. Let μ be a measure on $\mathbb{R}^{n}, n \geqslant 1$, satisfying (1) and (2), and such that Λ is contained in a finite union of translates of a lattice L. Then μ is of the form

$$
\begin{equation*}
\mu=\sum_{j=1}^{N} c_{j} \sum_{\ell \in L} \mathrm{e}^{\mathrm{i}\left\langle\theta_{j}, \ell\right\rangle} \delta_{\ell+\omega_{j}} \tag{4}
\end{equation*}
$$

where ω_{j}, θ_{j} are vectors in \mathbb{R}^{n}, and c_{j} are complex numbers $(1 \leqslant j \leqslant N)$.
Conversely, every measure μ of the form (4) satisfies (1) and (2).

2. Proof of Theorem 1

Here we sketch the proof of Theorem 1 . We consider a measure μ on \mathbb{R}^{n} satisfying (1) and (2). Only in Section 2.3 the specifics of the one-dimensional case are used.
2.1. We will use the following notation: for $h \in \Lambda-\Lambda$, denote

$$
\Lambda_{h}:=\Lambda \cap(\Lambda-h)=\{\lambda \in \Lambda: \lambda+h \in \Lambda\} .
$$

Lemma 1. For every $h \in \Lambda-\Lambda$ and $r>0$, there is a non-zero finite measure v_{h} supported by Λ_{h}, whose spectrum lies in the r-neighborhood of the set $S-S$.

Proof. Multiply μ by a function $\varphi>0$ in the Schwartz class, whose spectrum lies in the ball $B_{r}:=\left\{x \in \mathbb{R}^{n}:|x|<r\right\}$. Since μ is a temperate distribution, this yields another measure

$$
\mu_{1}=\sum_{\lambda \in \Lambda} c(\lambda) \delta_{\lambda}
$$

such that
(i) $c(\lambda) \neq 0, \sum|c(\lambda)|<\infty$;
(ii) $\operatorname{spec}\left(\mu_{1}\right) \subset S+B_{r}$.

Consider the Fourier transform of μ_{1} :

$$
f(x):=\sum_{\lambda \in \Lambda} c(\lambda) \mathrm{e}^{-2 \pi \mathrm{i}\langle\lambda, x\rangle}
$$

Clearly, f is a bounded, continuous function on \mathbb{R}^{n}, and vanishes outside of $S+B_{r}$.
For $u \in \mathbb{R}^{n}$, set:

$$
\begin{aligned}
g(x, u) & :=f(x+u) \overline{f(x)}=\sum_{\lambda \in \Lambda} \sum_{\lambda^{\prime} \in \Lambda} c(\lambda) \overline{c\left(\lambda^{\prime}\right)} \mathrm{e}^{2 \pi \mathrm{i}\left(\left\langle\lambda^{\prime}-\lambda, x\right\rangle-\langle\lambda, u\rangle\right)} \\
& =\sum_{h \in \Lambda-\Lambda} \mathrm{e}^{2 \pi \mathrm{i}\langle h, x\rangle}\left[\sum_{\lambda \in \Lambda_{h}} c(\lambda) \overline{c(\lambda+h)} \mathrm{e}^{-2 \pi \mathrm{i}\langle\lambda, u\rangle}\right]
\end{aligned}
$$

Denote the quantity in brackets by $A_{h}(u)$. Clearly

$$
g(x, u)=\sum_{h \in \Lambda-\Lambda} A_{h}(u) \mathrm{e}^{2 \pi \mathrm{i}\langle h, x\rangle}
$$

vanishes identically (with respect to x) for each

$$
u \in U:=\mathbb{R}^{n} \backslash\left[(S-S)+B_{2 r}\right]
$$

It follows that $A_{h}(u)=0(u \in U)$. Consider the measure

$$
v_{h}:=\sum_{\lambda \in \Lambda_{h}} c(\lambda) \overline{c(\lambda+h)} \delta_{\lambda}
$$

then we have $\hat{v}_{h}=A_{h}$. It follows that $\hat{v}_{h}(u)=0(u \in U)$.
2.2. Notice that if r is sufficiently small, then the set U above contains a ball centered near zero, of radius $a=a(S)>0$. So v_{h} is a finite non-zero measure with a spectral gap of radius a.

Corollary. The set Λ (and S) in (1), (2) cannot be rationally independent.
We refer to [4] where several conclusions concerning the arithmetical structure of Λ, S are obtained in the onedimensional setting.
2.3. In a recent paper [11], a characterization is given of u.d. sets in \mathbb{R} that may support a finite measure with a spectral gap of given size, in terms of the lower Beurling-Malliavin density.

For our goal a simple necessary condition is enough, which admits an independent proof, similar to the one used in [13, pp. 1044-1045].

Lemma 2. If a u.d. set $\Lambda \subset \mathbb{R}$ supports a measure with a spectral gap of size $a>0$, then

$$
\begin{equation*}
D_{\#}(\Lambda):=\liminf _{R \rightarrow \infty} \frac{\#\left(\Lambda \cap B_{R}\right)}{\left|B_{R}\right|}>c(a, d(\Lambda))>0 \tag{5}
\end{equation*}
$$

2.4.

Lemma 3. If $\Lambda \subset \mathbb{R}^{n}$ is a u.d. set such that $D_{\#}\left(\Lambda_{h}\right)>c(\Lambda)>0(h \in \Lambda-\Lambda)$, then

$$
\begin{equation*}
D^{+}(\Lambda-\Lambda)<\infty \tag{6}
\end{equation*}
$$

Here

$$
D^{+}(\Lambda):=\limsup _{R \rightarrow \infty} \sup _{x \in \mathbb{R}^{n}} \frac{\#\left(\Lambda \cap\left(x+B_{R}\right)\right)}{\left|B_{R}\right|}
$$

is the Kahane-Beurling upper uniform density.
2.5. Now we need the concepts of Delone and Meyer sets in \mathbb{R}^{n}.

Definition. Λ is called a Delone set if Λ is u.d. and relatively dense.
Definition. Λ is called a Meyer set if the following two conditions are satisfied:
(i) Λ is a Delone set;
(ii) There is a finite set F such that $\Lambda-\Lambda \subset \Lambda+F$.

Lagarias [6] proved that if Λ is a Delone set and $\Lambda-\Lambda$ is u.d., then Λ is a Meyer set (see also [12]). Using a similar argument one can prove:

Lemma 4. If Λ is a Delone set such that $D^{+}(\Lambda-\Lambda)<\infty$, then Λ is a Meyer set.
2.6.

Lemma 5. If Λ is a Meyer set and if

$$
\begin{equation*}
D^{+}\left(\Lambda_{h}\right)>c(\Lambda)>0 \quad(h \in \Lambda-\Lambda) \tag{7}
\end{equation*}
$$

then Λ is contained in a finite union of translates of a lattice.
Proof. By a theorem of Meyer [9, Sections II.5, II.14] (see also [12]) we have $\Lambda \subset M+F$, where F is a finite set and M is a "model set". The latter means that there is a lattice $\Gamma \subset \mathbb{R}^{n} \times \mathbb{R}^{m}(m \geqslant 0)$ and a bounded set $\Omega \subset \mathbb{R}^{m}$ such that

$$
\begin{equation*}
M=M\left(\mathbb{R}^{n} \times \mathbb{R}^{m}, \Gamma, \Omega\right):=\left\{p_{1}(\gamma): \gamma \in \Gamma, p_{2}(\gamma) \in \Omega\right\} \tag{8}
\end{equation*}
$$

where $p_{1}: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ and $p_{2}: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ are the canonical projections, p_{1} restricted to Γ is injective, and $p_{2}(\Gamma)$ is dense in \mathbb{R}^{m}.

Thus any $\lambda \in \Lambda$ admits a representation

$$
\lambda=p_{1}\left(\gamma_{\lambda}\right)+u_{\lambda}, \quad \gamma_{\lambda} \in \Gamma, p_{2}\left(\gamma_{\lambda}\right) \in \Omega, u_{\lambda} \in F
$$

Let $E:=\left\{p_{2}\left(\gamma_{\lambda}\right): \lambda \in \Lambda\right\}$. Given $\delta>0$, choose $\lambda_{0}, \lambda_{0}^{\prime} \in \Lambda$ such that

$$
\left|p_{2}\left(\gamma_{\lambda_{0}^{\prime}}\right)-p_{2}\left(\gamma_{\lambda_{0}}\right)\right|^{2}>(\operatorname{diam} E)^{2}-\delta^{2}
$$

and set $h:=\lambda_{0}^{\prime}-\lambda_{0}$. Then $h \in \Lambda-\Lambda$.
One can prove that M and F may be chosen such that $p_{1}(\Gamma) \cap(F+F-F-F)=\{0\}$. It follows that if $\lambda \in \Lambda_{h}$ then

$$
p_{2}\left(\gamma_{\lambda+h}\right)-p_{2}\left(\gamma_{\lambda}\right)=p_{2}\left(\gamma_{\lambda_{0}+h}\right)-p_{2}\left(\gamma_{\lambda_{0}}\right),
$$

which in turn implies

$$
p_{2}\left(\gamma_{\lambda}\right) \in \Omega^{\prime}:=p_{2}\left(\gamma_{\lambda_{0}}\right)+B_{\delta} .
$$

This shows that

$$
\Lambda_{h} \subset M^{\prime}+F, \quad M^{\prime}=M^{\prime}\left(\mathbb{R}^{n} \times \mathbb{R}^{m}, \Gamma, \Omega^{\prime}\right)
$$

Now suppose that $m \geqslant 1$. Since $D^{+}\left(M^{\prime}\right)=(\operatorname{det} \Gamma)^{-1}\left|\Omega^{\prime}\right|$, it follows that $D^{+}\left(\Lambda_{h}\right)<\varepsilon$ if δ is sufficiently small, which is in contradiction with (7). Hence $m=0$, and M must be a lattice.
2.7. Theorem 1 now follows. Indeed, (2) implies that Λ is a Delone set (see Lemma 1 in [2]). This together with (5) gives (6) (Lemma 3). So Λ is a Meyer set (Lemma 4). Lemmas 1 and 2 imply (7). Now Lemma 5 finalizes the proof.

3. Proof of Theorem 2

Now we sketch the proof of Theorem 2.

Lemma 6. Given a number $a>0$ there is $R=R(n, a)$ such that, if a measure v is supported by a u.d. set Q in $\mathbb{R}^{n}, \mathrm{~d}(Q)>a$, and if \hat{v} vanishes on a ball B_{R}, then $v=0$.

This lemma follows from Ingham type theorems used in the interpolation theory in \mathbb{R}^{n} (see for example [14]).
Lemma 6 allows one to avoid using the one-dimensional Lemma 2 and gives that Λ_{h} is a Delone set with uniform estimate: every ball of radius R (independent of h) intersects Λ_{h}. In turn, this implies (6) and (7). Now the proof of Theorem 2 can be finished as above.

We skip the proof of Theorem 3.

4. Remarks

It should be mentioned that if one requires S to be just a countable set, then the result fails. As an example, one may take Meyer's quasicrystals, namely the model set M defined by (8) (with $m \geqslant 1$). Then M is a u.d. set, which supports a measure μ whose Fourier transform is a sum of point masses (see [10]), but M is not contained in a finite union of translates of a lattice.

See also [3] where possible applications of general quasicrystals are discussed.

Note added in proof

At present we have proved Theorem 2 for positive measures μ in \mathbb{R}^{n}, without the assumption that $S-S$ is u.d. The proof will be published elsewhere.

References

[1] A. Córdoba, La formule sommatoire de Poisson, C. R. Acad. Sci. Paris, Ser. I 306 (1988) 373-376.
[2] A. Córdoba, Dirac combs, Lett. Math. Phys. 17 (1989) 191-196.
[3] F. Dyson, Birds and frogs, Not. Am. Math. Soc. 56 (2009) 212-223.
[4] J.-P. Kahane, S. Mandelbrojt, Sur l'équation fonctionnelle de Riemann et la formule sommatoire de Poisson, Ann. Sci. Éc. Norm. Super. 75 (1958) $57-80$.
[5] M.N. Kolountzakis, J.C. Lagarias, Structure of tilings of the line by a function, Duke Math. J. 82 (1996) 653-678.
[6] J.C. Lagarias, Meyer's concept of quasicrystal and quasiregular sets, Commun. Math. Phys. 179 (1996) 365-376.
[7] J.C. Lagarias, Mathematical quasicrystals and the problem of diffraction, in: Directions in Mathematical Quasicrystals, in: CRM Monogr. Ser., vol. 13, Amer. Math. Soc., Providence, 2000, pp. 61-93.
[8] Y. Meyer, Nombres de Pisot, nombres de Salem et analyse harmonique, Lect. Notes Math., vol. 117, Springer-Verlag, 1970.
[9] Y. Meyer, Algebraic Numbers and Harmonic Analysis, N.-Holl. Math. Libr., vol. 2, North-Holland Publishing Co./American Elsevier Publishing Co., Inc., Amsterdam-London/New York, 1972.
[10] Y. Meyer, Quasicrystals, Diophantine approximation and algebraic numbers, in: Beyond Quasicrystals, Les Houches, 1994, Springer, Berlin, 1995, pp. 3-16.
[11] M. Mitkovski, A. Poltoratski, Pólya sequences, Toeplitz kernels and gap theorems, Adv. Math. 224 (2010) 1057-1070.
[12] R.V. Moody, Meyer sets and their duals, in: The Mathematics of Long-Range Aperiodic Order, Waterloo, ON, 1995, in: NATO Adv. Stud. Inst. Ser., Ser. C, Math. Phys. Sci., vol. 489, Kluwer Acad. Publ., Dordrecht, The Netherlands, 1997, pp. 403-441.
[13] A. Olevskii, A. Ulanovskii, Universal sampling and interpolation of band-limited signals, Geom. Funct. Anal. 18 (2008) 1029-1052.
[14] A. Olevskii, A. Ulanovskii, On multi-dimensional sampling and interpolation, Anal. Math. Phys. 2 (2012) 149-170.

[^0]: (ty Research supported in part by the Israel Science Foundation.
 E-mail addresses: levnir@math.biu.ac.il (N. Lev), olevskii@post.tau.ac.il (A. Olevskii).

