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We study a class of algebraic surfaces of degree 3n in the complex projective space
with only ordinary double points. They are obtained by using bivariate polynomials with
complex coefficients related to the generalized cosine associated with the affine Weyl
group of the root system A2.
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r é s u m é

Nous étudions une classe de surfaces algébriques de degré 3n dans l´espace projectif
complexe, avec seulement des points doubles ordinaires. Ils sont générés par des
polynômes complexes qui sont liés au cosinus généralisé associé au groupe de Weyl affine
du système de racines A2.

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

In [2], Chmutov introduced surfaces Vd of degree d in the complex projective space P3(C) given by the affine equations
Pd(u, v) + Td(w) = 0, where Pds are the generalized Chebyshev polynomials or folding polynomials [6,7] associated with
the affine Weyl group W̃ (A2) of the root system A2, and Td is a Chebyshev polynomial. In this work, we study a class of
surfaces of degree 3n that have more singularities than the Chmutov surfaces of the same degree.

For d = 3n, n = 1,2,3, . . . the surfaces Ud are given by the affine equations:

Q d(u, v) + Td(w) = 0 (1)

where Td is the Chebyshev polynomial of degree d with two critical values 2 and 3, and Q d is defined as follows. The
generalized cosine associated with the affine Weil group W̃ (A2) is h(u, v) = (h1,h2), where:

h1(u, v) := e−2π iu + e−2π iv + e2π i(u+v), h2(u, v) := e2π iu + e2π iv + e−2π i(u+v) (2)

The polynomials Pd appearing in the surfaces Vd are defined in such a way that Pd(h1(u, v),h2(u, v)) := Cd(u, v), where
Cd(u, v) := h1,d(u, v) + h2,d(u, v),h1,d(u, v) = h1(du,dv),h2,d(u, v) = h2(du,dv). For (x, y) := h(u, v), it can be shown [6,2]
that Pd(x, y) = jd(x, y) + jd(y, x), where jd(x, y) is the determinant of a dxd matrix:
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jd(x, y) = det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x 1 0 0 0 0 . . . 0
2y x 1 0 0 0 . . . 0
3 y x 1 0 0 . . . 0
0 1 y x 1 0 . . . 0
0 0 1 y x 1 0 . . . 0
. . . . . . . . . . . . . . . . . . . . . 0
. . . . . . . . . 0 1 y x 1
0 . . . . . . 0 0 1 y x

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The number of non-degenerate singularities of Vd for d = 3n is [2]:(
d

2

)⌊
d

2

⌋
+

(
d2

3
− d

)⌊
d − 1

2

⌋
(3)

For the construction of the surfaces Ud , we use:

g1,d(u, v) := e−2π i(du+ 2
3 ) + e−2π i(dv− 1

3 ) + e2π i(d(u+v)+ 1
3 ), g2,d := e2π i(du+ 2

3 ) + e2π i(dv− 1
3 ) + e−2π i(d(u+v)+ 1

3 )

(4)

There are bivariate polynomials Q d such that Q d(h1(u, v),h2(u, v)) := Hd(u, v), where:

Hd(u, v) := g1,d(u, v) + g2,d(u, v) = 2 cos

(
2πdu − 2π

3

)
+ 2 cos

(
2πdv − 2π

3

)
+ 2 cos

(
2πd(u + v) + 2π

3

)
(5)

Having in mind that g1,d(u, v) = e
2π i

3 h1,d(u, v) and g2,d(u, v) = e− 2π i
3 h2,d(u, v), we get, for (x, y) := h(u, v):

Q d(x, y) = e
2π i

3 jd(x, y) + e− 2π i
3 jd(y, x) (6)

The homogeneous part of highest degree in Q d(x, y) is e
2π i

3 xd + e− 2π i
3 yd; therefore, Q d has (d − 1)2 critical points.

Lemma. The polynomial Q d has d(d−3)
6 critical points with critical value 6,

(d
2

)
critical points with critical value −2 and d2

3 − d + 1
critical points with critical value −3. All the critical points of Q d are non-degenerate.

Proof. We restrict Hd and h on the plane with real coordinates. The Jacobi matrices satisfy J (Hd) = J (Q d) ◦ J (h). Zeros of
the Jacobian determinant of h:

det J (h) = 4π2e−2π i(u+v)
(
e−2π iv − e−2π iu)(

e2π i(u+2v) − 1
)(

e2π i(2u+v) − 1
)

(7)

are the sides of the triangle � whose interior is given by u − v > 0, u + 2v > 0, 2u + v < 1, which is the fundamental region
of W̃ (A2). All the points from one orbit of W̃ (A2) are mapped by h into a single point, and the images of the critical points
of Hd from the interior of � by h are the critical points of Q d .

A direct computation of the critical points of Hd leads to three cases. In the following list, we indicate the critical value
ζ and the number of points Nζ corresponding to ζ inside � by (ζ, Nζ ):

(a) (6,
d(d−3)

6 ); u = 3k+1
d , v = 3l+1

d ; k, l ∈ Z.

(b) (−3, d2

3 − d + 1); u = k
3d , v = l

3d , with k = 3m − 1, l = 3p − 1 or k = 3m, l = 3p; m, p ∈ Z.

(b1) (−3,1 + d(d−3)
6 ); u = 3m+2

3d , v = 3p+2
3d ; m, p ∈ Z.

(b2) (−3,
d(d−3)

6 ); u = m
d , v = p

d ; m, p ∈ Z.

(c) (−2,
(d

2

)
); u = 3k+2

6d , v = 3l+2
6d with k or l odd.

(c1) (−2,
d(d−1)

3 ); u = 6m−1
6d , v = 3p−1

6d ; m, p ∈ Z.

(c2) (−2,
d(d−1)

6 ); u = 6m+2
6d , v = 6p−1

6d ; m, p ∈ Z.

The hessian matrix of Hd:(−8π2d2(cos(2πdu − 2π
3 ) − cos(2πd(u + v) + 2π

3 )) −8π2d2 cos(2πd(u + v) + 2π
3 )

−8π2d2 cos(2πd(u + v) + 2π
3 ) −8π2d2(cos(2πdv − 2π

3 ) − cos(2πd(u + v) + 2π
3 ))

)

has full rank in all the critical points, hence they are non-degenerate. By adding the critical points in (a), (b) and (c), we
obtain that Hd has (d − 1)2 critical points in the interior of �. �

In Figs. 1, 2, we can see the critical points of Hd inside � for d = 6,9. Critical points with critical values 6, −2, −3
are represented by ◦, ∗, •, respectively. The distance between two consecutive lines in the (u, v) oblique coordinate system
is 1 .
6d
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Fig. 1. The critical points of H6 inside the fundamental region � of the affine Weyl group W̃ (A2).

Fig. 2. The critical points of H9 inside �.

Theorem. The number of singular points of Ud is:
(

d

2

)⌊
d

2

⌋
+

(
d2

3
− d + 1

)⌊
d − 1

2

⌋
(8)

All the singular points are non-degenerate. The surface cannot have singular points at infinity.

Proof. The Chebyshev polynomials Td(w) have � d
2 � critical points with critical value 2 and � d−1

2 � critical points with critical
value 3. The surface is singular at the points where the sum of the critical values of Td(w) and Q d(u, v) is zero. The result
for the number of non-degenerate singularities of Ud follows then from the Lemma: Q d has

(d
2

)
critical points with critical

value −2 and d2

3 − d + 1 critical points with critical value −3.
In the Lemma, we have also shown that the number of distinct critical points of Q d is (d − 1)2, therefore Ud can not

have singular points at infinity. �
Consider a surface of degree d in P3(C) with N(d) double points and no other singularities, and let μ(d) = max N(d).

Then we have:

Corollary. μ(3n) �
(3n

2

)� 3n
2 � + (3n2 − 3n + 1)� 3n−1

2 �.

We notice that U3n has � 3n−1
2 � more singularities than V 3n (see Eq. (3)). Also of interest are hypersurfaces in P4(C) with

affine equations:

Q 3n(u1, u2) − Q 3n(u3, u4) = 0 (9)

They have (
3n(3n−1)

2 )2 + (3n(n − 1)+ 1)2 + (
3n(n−1)

2 )2 non-degenerate singularities. We find 3n(n − 1) more singularities than
in the Chmutov hypersurfaces P3n(u1, u2) − P3n(u3, u4) = 0. Hypersurfaces with A j-singularities in Pn(C) can be obtained
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along the lines of [5]. In particular, there is a family of Belyi polynomials associated with a series of planar trees obtained
by a substitution process, which, when used in combination with Q d + 2, allows us to show the existence of surfaces with
a high number of cusps (see Appendix B and Fig. 1 in [5]).

Real variants of Vd were studied in [1], and the authors showed that the known lower bounds for the maximum number
of ordinary double points on a surface of degree d can be attained with only real singularities. Recently, we have shown that
a construction connected with the derivation of substitution tilings [3] can be used for the generation of algebraic surfaces
with many real nodes [4]. One of the two types of surfaces obtained is equivalent to real variants of Vd . The other type
consists in surfaces of degree 3n that have the same number of singularities as the surfaces presented in this work. In fact,
they are related to the real variants of U3n(u, v, w) with u = x + iy, v = x − iy, w = z, for x, y, z ∈ R.

We have considered only the polynomials Q d for d = 3n. The study of the critical points of Q d for d �= 3n shows that
the Chmutov lower bound μ(d) �

(d
2

)� d
2 � + ( 1

3 d2 − d + 2
3 )� d−1

2 � is not improved for such cases with surfaces of the type
described by Eq. (1).
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