Algebraic Geometry

Surfaces in \mathbb{P}^{4} whose 4-secant lines do not sweep out a hypersurface

Surfaces de \mathbb{P}^{4} dont les droites quadrisécantes ne couvrent pas une hypersurface

José Carlos Sierra
Instituto de Ciencias Matemáticas (ICMAT), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain

ARTICLE INFO

Article history:

Received 9 July 2013
Accepted after revision 25 September 2013
Available online 10 October 2013
Presented by Claire Voisin

Abstract

We prove that a smooth surface in \mathbb{P}^{4} whose 4 -secant lines do not sweep out a hypersurface of \mathbb{P}^{4} either lies on a pencil of cubic hypersurfaces, or else is linked to a Veronese surface by the complete intersection of a cubic and a quartic hypersurface. © 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. R É S U M É

Nous montrons qu'une surface lisse dans \mathbb{P}^{4} dont les droites quadrisécantes ne couvrent pas une hypersurface de \mathbb{P}^{4} est, soit contenue dans un pinceau de cubiques, soit liée à une surface de Veronese via l'intersection complète d'une cubique et d'une quartique.
© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let $X \subset \mathbb{P}^{4}$ be a smooth complex projective surface. A line $L \subset \mathbb{P}^{4}$ is said to be k-secant to X if $X \cap L$ is a finite scheme of length at least k. While the 2 -secant lines of X fill up \mathbb{P}^{4} unless X lies on a hyperplane, Aure [2] characterized the elliptic quintic scrolls - refining earlier work of Severi in his celebrated paper [19] - as the only smooth surfaces not lying on a quadric hypersurface whose 3 -secant lines do not fill up \mathbb{P}^{4}, as conjectured by Peskine. On the other hand, Ran's generalization of the classical Trisecant Lemma [18] shows that the 4 -secant lines of X never fill up \mathbb{P}^{4}. In this case, X is expected to have a 2 -dimensional family of 4 -secant lines sweeping out a hypersurface of \mathbb{P}^{4}. Therefore, it is natural to ask whether there are any exceptions to this expected behavior. Of course, the 4 -secant lines of a surface lying on a pencil of cubic hypersurfaces do not swept out a hypersurface, so in the spirit of Aure's work we show that a smooth surface whose 4-secant lines do not sweep out a hypersurface of \mathbb{P}^{4} either lies on a pencil of cubic hypersurfaces, or else is linked to a Veronese surface by the complete intersection of a cubic and a quartic hypersurface. We would like to emphasize the analogy with Aure's result, which in fact can be rephrased by saying that a smooth surface whose 3 -secant lines do not fill up \mathbb{P}^{4} either lies on a quadric hypersurface, or else is linked to a Veronese surface by the complete intersection of two cubic hypersurfaces.

[^0]In higher dimensions, Ran [17] proved - under an extra assumption that is satisfied as soon as $n \geqslant 4$ - that the ($n+1$)-secant lines of a smooth n-dimensional subvariety $X \subset \mathbb{P}^{n+2}$ fill up the ambient space if X does not lie on a hypersurface of degree n. On the other hand, Mezzetti [15, Theorem 0.2] and Kwak [10, Theorem 3.4(b)] obtained some partial results that suggest that the same could be true in the case $n=3$. In view of [18] and our result, it would be interesting to study also the smooth n-dimensional subvarieties of \mathbb{P}^{n+2} whose $(n+2)$-secant lines do not sweep out a hypersurface of \mathbb{P}^{n+2} (cf. [10, Open questions 4.7]), but we will not address this problem here.

Going back to the case $n=2$, there are several ways to proceed. In this paper, we give a short proof based on Le Barz's formula [13] for the 4 -secant cycle of $X \subset \mathbb{P}^{4}$, that allows us to express the Euler characteristic $\chi\left(\mathcal{O}_{X}\right)$ in terms of the degree d and the sectional genus g of X. Now we come to the key fact of the proof: as the 4 -secant lines of X do not sweep out a hypersurface of \mathbb{P}^{4}, the inner projection from a general point of X into \mathbb{P}^{3} does not have any triple point, and hence we can express g in terms of d thanks to Kleiman's triple-point formula. To conclude the proof, Halphen's bound yields a short list of admissible pairs (d, g) for which the corresponding surface is well known.

We point out that Bauer [3] classified - in response to a conjecture of Van de Ven - the smooth surfaces $X \subset \mathbb{P}^{5}$ whose 3-secant lines do not sweep out a 3-dimensional subvariety of \mathbb{P}^{5} in a similar way, that is, using Le Barz's formula for the 3-secant cycle of $X \subset \mathbb{P}^{5}$ and noting that the inner projection from a general point of X into \mathbb{P}^{4} does not have any double point.

Finally, we mention that smooth surfaces with no 4 -secant lines were classified first by Bertolini and Turrini [4], as explained in Remark 4.

2. Proof

We work over the field of complex numbers.
Theorem. Let $X \subset \mathbb{P}^{4}$ be a smooth surface whose 4 -secant lines do not sweep out a hypersurface of \mathbb{P}^{4}. Then either X lies on a pencil of cubic hypersurfaces, or else X is linked to a Veronese surface by the complete intersection of a cubic and a quartic hypersurface.

The proof is based on the following formula. Let d denote the degree of X, let $g:=g(C)$ denote the genus of a general hyperplane section C of X, and let $\chi:=\chi\left(\mathcal{O}_{X}\right)$ denote the Euler characteristic of X.

Le Barz's formula. (See [13] and [14].) The number N_{4} of 4 -secant lines of a smooth surface $X \subset \mathbb{P}^{4}$ meeting a general line, if finite, is:

$$
N_{4}=\frac{1}{8}\left(d^{4}-10 d^{3}+d^{2}(35-8 g)+2 d(28 g-33)+4\left(g^{2}-25 g+24\right)+8 \chi(2 d-9)\right)
$$

The key fact of the proof is the following:
Lemma. If the 4 -secant lines of a smooth surface $X \subset \mathbb{P}^{4}$ do not sweep out a hypersurface and X is not a scroll (i.e. X is not covered by lines), then

$$
g=\frac{1}{6}(9 d-33 \pm \sqrt{\Delta(d)})
$$

where $\Delta(d):=3 d^{4}-72 d^{3}+636 d^{2}-2448 d+3465$.
Proof. Let $x \in X$ be a general point, and let $\mathrm{Bl}_{x}(X)$ denote the blowing-up of X at x. It follows from the hypotheses that the map $f: \mathrm{Bl}_{x}(X) \rightarrow \mathbb{P}^{3}$ induced by the inner projection $\pi_{x}: X \rightarrow \mathbb{P}^{3}$ is finite and does not have any triple point. Hence we apply Kleiman's triple-point formula to f (see [9] for the general picture; see also [13] for our particular situation), so

$$
\chi=\frac{1}{12}\left(-d^{3}+9 d^{2}-2 d(16-3 g)-12(2 g-5)\right)
$$

(cf. [6, Proposition 3.2]) and the statement follows from Le Barz's formula since $N_{4}=0$.
Remark 1. On the other hand, if $X \subset \mathbb{P}^{4}$ is a scroll then there exists a smooth irreducible curve $B \subset \mathbb{G}(1,4)$ of genus $g(B)$ such that $X \cong \mathbb{P}(E)$, where E denotes the rank-2 universal bundle on $\mathbb{G}(1,4)$ restricted to B. Then $g=g(B), \chi=1-g$, $K^{2}=8-8 g$ and hence $g=\left(d^{2}-5 d+6\right) / 6$ by the well-known double-point formula

$$
d^{2}=5 d+10(g-1)+2 K^{2}-12 \chi
$$

Therefore, if $N_{4}=0$ then $(d, g) \in\{(2,0),(3,0),(5,1)\}$ (cf. [11] and [1]).

Proof of the theorem. If $X \subset \mathbb{P}^{4}$ is a scroll then $(d, g) \in\{(2,0),(3,0),(5,1)\}$ by Remark 1. Otherwise, it follows from the lemma that $g=(9 d-33 \pm \sqrt{\Delta(d)}) / 6$. If $g=(9 d-33-\sqrt{\Delta(d)}) / 6 \geqslant 0$ then $d \leqslant 13$, so $(d, g) \in\{(4,0),(5,2),(6,3),(7,5),(8,6)$, $(9,6)\}$. On the other hand, if $g=(9 d-33+\sqrt{\Delta(d)}) / 6$ then Halphen's bound yields $d \leqslant 20$ and hence $(d, g) \in\{(3,1),(4,1)$, $(5,2),(6,4),(7,5),(8,7),(9,10)\}$. If $(d, g)=(9,6)$ then $\chi=-4$, so X would be a ruled surface, and hence $K^{2}=-31$ by the double-point formula. This contradicts the inequality $K^{2} \leqslant 8 \chi$. The rest of the cases are effective, and X is well known in all of them. As g is maximal (in the sense of [7]) except in the cases $(d, g) \in\{(4,0),(5,1),(6,3),(8,6)\}$, a simple description of X and \mathcal{I}_{X} follows by linkage. Moreover, if $(d, g)=(6,3)$ then X is linked to a cubic scroll by a complete intersection $(3,3)$. If $(d, g)=(4,0)$ then $h^{1}\left(\mathcal{I}_{X}(1)\right)=1$, and hence X is a projected Veronese surface by Severi's theorem [19]. Finally, in the cases $(d, g) \in\{(5,1),(8,6)\}$ one can easily describe X as a surface linked to a Veronese surface by a complete intersection $(3,3)$ and $(3,4)$, respectively.

Remark 2. Surfaces cut out by cubic hypersurfaces do not have any 4 -secant line. Let us describe the family of 4 -secant lines in the cases in which $X \subset \mathbb{P}^{4}$ is not cut out by cubic hypersurfaces, namely $(d, g) \in\{(8,7),(8,6)\}$:
(i) If X is linked to a plane X^{\prime} by a c.i. $(3,3)$, then it has a resolution:

$$
0 \rightarrow \mathcal{O}_{\mathbb{P}^{4}}(-1)^{\oplus 2} \rightarrow \mathcal{O}_{\mathbb{P}^{4}} \oplus \mathcal{O}_{\mathbb{P}^{4}}(1)^{\oplus 2} \rightarrow \mathcal{I}_{X}(4) \rightarrow 0
$$

In this case, X is a minimal elliptic surface over \mathbb{P}^{1} with Kodaira dimension $\kappa=1$ (see [16] or [8]). It has a unique plane quartic curve $P \subset X^{\prime}$, and it is fibered by the pencil $|H-P|$ of elliptic quartic curves.
(ii) If X is linked to a Veronese surface by a c.i. $(3,4)$ then it has a resolution:

$$
0 \rightarrow T_{\mathbb{P}^{4}}(-2) \rightarrow \mathcal{O}_{\mathbb{P}^{4}}^{\oplus 4} \oplus \mathcal{O}_{\mathbb{P}^{4}}(1) \rightarrow \mathcal{I}_{X}(4) \rightarrow 0
$$

In this case $\sigma: X \rightarrow \mathbb{P}^{2}$ is the blowing-up along 16 points $\left\{x_{1}, \ldots, x_{4}, y_{1}, \ldots, y_{12}\right\}$ lying on a quartic of \mathbb{P}^{2} and embedded in \mathbb{P}^{4} by the linear system $\left|\sigma^{*}\left(6 L-\sum 2 x_{i}-\sum y_{j}\right)\right|$ (see [16] or [8]). It has five plane quartic curves, namely $\sigma^{*}\left(4 L-\sum x_{i}-\right.$ $\left.\sum y_{j}\right)$ and $\sigma^{*}\left(5 L-x_{i}-\sum_{k \neq i} 2 x_{k}-\sum y_{j}\right)$, and it is ruled by five pencils of rational quartic curves, namely $\left|\sigma^{*}\left(2 L-\sum x_{i}\right)\right|$ and $\left|\sigma^{*}\left(L-x_{i}\right)\right|$.

Remark 3. As expected, one can check that the Cayley-Le Barz formula (see [5] and [12]):

$$
\frac{1}{12}(d-2)(d-3)^{2}(d-4)-\frac{1}{2} g\left(d^{2}-7 d+13-g\right)
$$

for the number, if finite, of 4 -secant lines of $C \subset \mathbb{P}^{3}$ gives 1 in the case (i), where $(d, g)=(8,7)$, and 5 in the case (ii), where $(d, g)=(8,6)$.

Remark 4. If the family of 4-secant lines of a smooth surface $X \subset \mathbb{P}^{4}$ is at most 1-dimensional, then C does not have any 4-secant line, so the Cayley-Le Barz formula and Halphen's bound yield

$$
(d, g) \in\{(2,0),(3,0),(3,1),(4,0),(4,1),(5,1),(5,2),(6,3),(6,4),(7,5),(9,10)\}
$$

and hence X is cut out by cubic hypersurfaces (cf. [4]).

References

[1] A.B. Aure, On surfaces in projective 4-space, Thesis, Oslo, 1987.
[2] A.B. Aure, The smooth surfaces in \mathbf{P}^{4} without apparent triple points, Duke Math. J. 57 (1988) 423-430.
[3] I. Bauer, Inner projections of algebraic surfaces: a finiteness result, J. Reine Angew. Math. 460 (1995) 1-13.
[4] M. Bertolini, C. Turrini, Surfaces in \mathbf{P}^{4} with no quadrisecant lines, Beitr. Algebra Geom. 39 (1998) 31-36.
[5] A. Cayley, On skew surfaces, otherwise scrolls, Philos. Trans. R. Soc. Lond. 153 (1863) 453-483.
[6] P. De Poi, Threefolds in \mathbb{P}^{5} with one apparent quadruple point, Commun. Algebra 31 (2003) 1927-1947.
[7] L. Gruson, Ch. Peskine, Genre des courbes de l'espace projectif, in: Algebraic Geometry, Proc. Sympos., Univ. Tromsø, Tromsø, 1977, in: Lect. Notes Math., vol. 687, Springer, Berlin, 1978, pp. 31-59.
[8] P. Ionescu, Embedded projective varieties of small invariants, III, in: Algebraic Geometry, L’Aquila, 1988, in: Lect. Notes Math., vol. 1417, Springer, Berlin, 1990, pp. 138-154.
[9] S.L. Kleiman, Multiple-point formulas. I. Iteration, Acta Math. 147 (1981) 13-49.
[10] S. Kwak, Smooth threefolds in \mathbb{P}^{5} without apparent triple or quadruple points and a quadruple-point formula, Math. Ann. 320 (2001) 649-664.
[11] A. Lanteri, On the existence of scrolls in \mathbf{P}^{4}, Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat. (8) 69 (1980) 223-227.
[12] P. Le Barz, Validité de certaines formules de géométrie énumérative, C. R. Acad. Sci. Paris, Sér. A 289 (1979) 755-758.
[13] P. Le Barz, Formules pour les multisécantes des surfaces, C. R. Acad. Sci. Paris, Sér. I 292 (1981) 797-800.
[14] P. Le Barz, Quelques formules multisécantes pour les surfaces, in: Enumerative Geometry, Sitges, 1987, in: Lect. Notes Math., vol. 1436, Springer, Berlin, 1990, pp. 151-188.
[15] E. Mezzetti, On quadrisecant lines of threefolds in \mathbb{P}^{5}, Le Matematiche 55 (2000) 469-481, Dedicated to Silvio Greco on the occasion of his 60th birthday (Catania, 2001).
[16] Ch. Okonek, Flächen vom Grad 8 im P ${ }^{4}$, Math. Z. 191 (1986) 207-223.
[17] Z. Ran, On projective varieties of codimension 2, Invent. Math. 73 (1983) 333-336.
[18] Z. Ran, The (dimension + 2)-secant lemma, Invent. Math. 106 (1991) 65-71.
[19] F. Severi, Intorno ai punti doppi impropri di una superficie generale dello spazio a quattro dimensioni, e a' suoi punti tripli apparenti, Rend. Circ. Mat. Palermo 15 (1901) 33-51.

[^0]: 放 Research supported by the "Ramón y Cajal" contract RYC-2009-04999 of MICINN, the project MTM2012-32670 and the ICMAT "Severo Ochoa" project SEV-2011-0087 of MINECO.

 E-mail address: jcsierra@icmat.es.
 1631-073X/\$ - see front matter © 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

