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Let A, B be two Hilbert space positive operators such that 1 � ‖B‖ �= 0 and the positive
part of A − I satisfies Tr(A − I)+ = ∞. Then A = ∑∞

n=1 Bn , where Bn ∼ B for all n. (X ∼ Y
means X = T T ∗ and Y = T ∗T .) This extends a 2009 result of Kaftal, Ng, and Zhang for
sums of projections.

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Si A est un opérateur positif tel que la partie positive de A − I vérifie Tr(A − I)+ = ∞,
alors A est une somme de projections de rangs infinis. Ce résultat, obtenu en 2009 par
Kalftal, Ng et Zhang, est étendu dans cette note aux sommes d’opérateurs Murray–von
Neumann équivalents à une contraction positive arbitraire.

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Infinite sums of projections and contractions

By operator, we mean a bounded linear operator on an infinite dimensional, separable (real or complex) Hilbert space H.
A positive operator is a self-adjoint operator whose spectrum lies on the non-negative half-line. The simplest positive
operators are projections. If a projection P has a range of infinite dimension, we say that P is infinite. Two projections
P , Q are equivalent, P ∼ Q , if their ranges have the same dimension, thus if P = T T ∗ and Q = T ∗T for some T (here,
a partial isometry). This classical relation (Murray–von Neumann) makes sense for positive operators: X ∼ Y merely means
that, restricting X and Y to their supports, these two restrictions are unitarily equivalent. A self-adjoint operator X can be
decomposed into positive and negative parts, X = X+ − X− . Then Tr X+,Tr X− ∈ [0,∞]. In [5] Kaftal, Ng, and Zhang showed
that a positive operator is a strong sum of projections under a rather optimal assumption, improving an earlier result of
Dykema et al. [4]. Their result entails the following theorem. I denotes the identity on H or on any subspace and N

∗ is the
set of positive integers.

Theorem 1.1. Let A be a positive operator such that Tr (A − I)+ = ∞. Then, there exists a family of infinite projections Q j , j ∈ N
∗ ,

such that:
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A =
∞∑
j=1

Q j.

The sum is a strong limit, norm convergence cannot hold. Since infinite projections are equivalent, it seems natural to
ask whether Theorem 1.1 is a special case of a more general result for sums of equivalent copies of any given positive
contraction. This generalization does hold.

Theorem 1.2. Let A be a positive operator such that Tr (A − I)+ = ∞ and let B �= 0 be a positive contraction. Then, there exists a
decomposition:

A =
∞∑
j=1

B j

where B j ∼ B for all j.

It would be interesting to obtain a similar result involving the usual unitary equivalence relation, B is unitarily equivalent
to each B j . Extra-assumptions on A and B would then be necessary; reasonable candidates are: (i) A is nonsingular and
(ii) the essential spectrum of B contains 0.

Kaftal, Ng, and Zhang established Theorem 1.1 in the more general setting of factors (see also [6] for results in the setting
of multiplier algebras). Theorem 1.2 probably holds for factors too; however, this is beyond the scope of our methods. Indeed,
our approach makes use of the following key block-matrix decomposition from [2, Lemma 3.4]; this decomposition is not
relevant in the setting of a general factor if the blocks do not belong to the factor too. Let Mn stand for the space of n-by-n
matrices and let M

+
n be its positive semi-definite part. For every matrix in M

+
n+m written in blocks, we have a decomposition:[

A X
X∗ B

]
= U

[
A 0
0 0

]
U∗ + V

[
0 0
0 B

]
V ∗ (1.1)

for some unitaries U , V ∈Mn+m . This is a simple but powerful fact, see [2,3].

2. Main steps of the proof of Theorem 1.2

This note is essentially self-contained, the next series of lemma easily follows from the well-known facts. Details, in-
cluding a new proof of Theorem 1.1, and further consequences of decomposition (1.1) will be given in a forthcoming work.
By operator, we always mean an operator on H unless otherwise specified. We will use block-matrix representations with
respect to infinite direct sums. We say that an infinite orthogonal direct sum:

H =
∞⊕

k=1

Hk

is a standard decomposition if dimHk = ∞ for all k ∈ N
∗ . An operator A then admits an operator matrix representation

A = (Ai, j) with respect to this standard decomposition, where Ai, j : H j → Hi is defined in an obvious way, i, j ∈ N
∗ . The

first lemma adapts decomposition (1.1) to operators on the Hilbert space H.

Lemma 2.1. Let A be a positive operator with a matrix representation A = (Ai, j) for some standard decomposition H = ⊕∞
k=1 Hk

and all diagonal entries Ak,k nonsingular. Then:

A =
∞∑

k=1

Vk Ak,k V ∗
k

for some isometries Vk :Hk →H, k ∈ N
∗ .

The second idea of the proof consists in combining the above lemma with the pinching theorem from [1]. We denote
by We(A) the essential numerical range of an operator A and refer to [1] for various equivalent definitions and basic
properties. The pinching theorem holds for complex and real Hilbert spaces. It may be stated as the next lemma. D stands
for the closed unit disc of the complex plane. Given an operator X on H and an operator Y on a subspace S ⊂ H, the
notation Y 
 X means that Y = U∗ XU for an onto isometry U : S →H.

Lemma 2.2. Let A be an operator such that We(A) ⊃ D and let {Xi}∞i=1 be a sequence of operators such that supi ‖Xi‖ < 1. Then,
there exists a standard decomposition of H for which A = (Ai, j) with diagonal blocks Ai,i 
 Xi for all i ∈N

∗ .
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The next lemma is an easy consequence for positive operators.

Lemma 2.3. Let A be a positive operator such that We(A) ⊃ (0,a) for some a > 1, and let {Xi}∞i=1 be a sequence of positive operators
such that β � Xi � 1 for some β > 0 and all i ∈ N

∗ . Then, there exists a standard decomposition of H for which A = (Ai, j) with
diagonal blocks Ai,i 
 Xi for all i ∈N

∗ .

If A is a positive operator whose essential norm satisfies ‖A‖e > 1, then we may decompose A in a sum of two positive
operators with essential numerical ranges containing an interval (0,a) for some a > 1. This simple observation combined
with Lemma 2.1 and Lemma 2.3 yields our last lemma. It is convenient to introduce a notation. The support of a positive
operator X is supp X = H� ker X and, given β > 0, we write X �s β if X|supp X � β , i.e., if X � βR X where R X is the range
projection.

Lemma 2.4. Let A be a positive operator such that ‖A‖e > 1 and let {B j}∞j=1 be a family of positive contractions and β > 0 such that
B j �s β for all j. Then, there exists a decomposition:

A =
∞∑
j=1

C j

where C j ∼ B j for all j.

In case of all the B j have infinite ranks, Lemma 2.4 is a straightforward consequence of Lemma 2.1 and Lemma 2.3. The
general case follows by considering direct sums among the B j in order to have infinite rank operators.

Theorem 1.2 follows from its special case Theorem 1.1 combined with Lemma 2.4. In fact, Lemma 2.4 allows one to cover
the case of contractions B such that ‖Bh‖ < ‖h‖ for all nonzero h, and the use of Theorem 1.1 is required for the case of B
with 1 as eigenvalue. We turn to the proof of Theorem 1.2.

Proof. (a) Thanks to the spectral resolution of B , we have a direct sum decomposition, for some m ∈N
∗ ∪ ∞,

H = H0

⊕(
m⊕

k=1

Hk

)

where dimHk = ∞ for all k � 1 and either dimH0 = 0, that is H0 is vacuous, or 1 � dimH0 � ∞, and such that, with
respect to this decomposition,

B = B0

⊕(
m⊕

k=1

Bk

)

with B0 = I on H0 (B0 is vacuous if so is H0), and Bk : Hk → Hk satisfies 1 > ‖Bk‖ and Bk �s βk for some βk > 0,
1 � k � m.

(b) We also have a direct sum decomposition, with the same m ∈ N
∗ ∪ ∞ as in (a),

H = H′
0

⊕(
m⊕

k=1

H′
k

)

where dimH′
k = ∞ for integers k, 1 � k � m, and either H′

0 is vacuous if so is H0 or dimH′
0 = ∞, and such that, with

respect to this decomposition,

A = A′
0

⊕(
m⊕

k=1

A′
k

)

such that Tr(A′
k − I)+ = ∞ for all integers k, 1 � k � m, and also Tr(A′

0 − I)+ = ∞ if H′
0 is not vacuous.

(c) If H0, H′
0 are not vacuous, Theorem 1.1 yields a family of projections {P j}∞j=1 of rank dimH0 such that A′

0 = ∑∞
j=1 P j ,

and hence:

A′
0 =

∞∑
j=1

V 0
j B0 V 0∗

j (2.1)

for some isometries V 0 :H0 →H′ , j ∈N
∗ .
j 0
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(d) Let k � 1. By Lemma 2.4 applied to A′
k and Bk , there exists a family of isometries V k

j : Hk → H′
k , 1 � j < ∞ such

that:

A′
k =

∞∑
j=1

V k
j Bk V k∗

j . (2.2)

(e) Putting together (2.1) (if not vacuous) and each Eq. (2.2), k � 1, and defining some isometries V j :H →H, for j ∈N
∗ ,

by V j|Hk = V k
j one gets:

A =
∞∑
j=1

V j B V ∗
j

which establishes the theorem. �
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