Differential geometry

On an isotropic property of anti-Kähler-Codazzi manifolds

CrossMark

Sur une propriété isotrope des variétés anti-Kähler-Codazzi

Arif Salimov ${ }^{\text {a }}$, Kursat Akbulut $^{\text {a }}$, Sibel Turanli ${ }^{\text {b }}$
${ }^{\text {a }}$ Ataturk University, Faculty of Science, Dep. of Mathematics, 25240, Turkey
${ }^{\text {b }}$ Erzurum Technical University, Faculty of Science, Dep. of Mathematics, Erzurum, Turkey

ARTICLE INFO

Article history:

Received 15 June 2013
Accepted after revision 27 September 2013
Available online 7 November 2013
Presented by the Editorial Board

Abstract

We give a proof of the fact that an anti-Kähler-Codazzi manifold reduces to an isotropic anti-Kähler manifold if and only if the Ricci tensor field coincides with the Ricci* tensor field. © 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. R É S U M É Nous donnons une preuve du fait qu'une variété de type anti-Kähler-Codazzi se réduit à une variété isotrope du même type si et seulement si le champ de tenseurs de Ricci coïncide avec le champ de tenseurs de Ricci*. © 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

In [3] we introduced the notion of an anti-Kähler-Codazzi manifold, for which a twin anti-Hermitian (Norden) metric satisfies the Codazzi equation. Such a structure gives rise to a new class of integrable anti-Hermitian structures, and we emphasize the importance of the Ricci and associated Ricci* tensor fields in the study of these manifolds. In this paper, we extend this study to other property of anti-Hermitian geometry, such as the isotropicity of anti-Hermitian structures.

We begin by collecting some basic materials that we need later. Let (M, J) be a $2 n$-dimensional almost complex manifold, where J denotes its almost complex structure. We denote by $\Im_{s}^{r}(M)$ the module of all tensor fields of type (r, s) on M.

A semi-Riemannian metric g of neutral signature (n, n) is an anti-Hermitian (Norden) metric if:

$$
g(J X, Y)=g(X, J Y)
$$

for any $X, Y \in \mathfrak{S}_{0}^{1}(M)$. An almost complex manifold (M, J) with an anti-Hermitian metric is referred to as an almost antiHermitian manifold. An anti-Kähler (Kähler-Norden) manifold can be defined as a triple (M, g, J), which consists of a smooth manifold M endowed with an almost complex structure J and an anti-Hermitian metric g such that $\nabla J=0$, where ∇ is the Levi-Civita connection of g. It is well known that the condition $\nabla J=0$ is equivalent to the \mathbb{C}-holomorphicity (analyticity) of the anti-Hermitian metric g [2] (see p. 76), i.e. $\Phi_{J} g=0$, where Φ_{J} is the Tachibana operator [4]: $\left(\Phi_{J} g\right)(X, Y, Z)=\left(L_{J X} g-L_{X} G\right)(Y, Z)$, and $G(Y, Z)=(g \circ J)(Y, Z)=g(J Y, Z)$ is the twin anti-Hermitian metric.

[^0]
2. Statement of the result

Let now (M, g, J) be an almost anti-Hermitian manifold. Then the pair (J, g) defines, as usual, the twin anti-Hermitian metric $G(Y, Z)=(g \circ J)(Y, Z)=g(J Y, Z)$. If the twin metric G satisfies the Codazzi equation:

$$
\begin{equation*}
\left(\nabla_{X} G\right)(Y, Z)-\left(\nabla_{Y} G\right)(X, Z)=0 \tag{1}
\end{equation*}
$$

or equivalently if the almost complex structure J satisfies:

$$
\left(\nabla_{X} J\right) Y-\left(\nabla_{Y} J\right) X=0
$$

for any $X, Y \in \Im_{0}^{1}(M)$, then the triple (M, J, g) is called an anti-Kähler-Codazzi manifold (or AKC-space) [3]. Anti-KählerCodazzi manifolds are integrable almost anti-Hermitian manifolds (see [3]).

It is well known that the inner product in the vector space can be extended to an inner product in the tensor space. In fact, if T and L are tensors of type (r, s) with components $T_{j_{1} \ldots j_{s}}^{i_{1} \ldots i_{r}}$ and $L_{l_{1} \ldots l_{s}}^{k_{1} \ldots k_{r}}$, then:

$$
g(T, L)=g_{i_{1} k_{1}} \ldots g_{i_{r} k_{r}} g^{j_{1} l_{1}} \ldots g^{j_{s} l_{s}} T_{j_{1} \ldots j_{s}}^{i_{1} \ldots i_{r}} L_{l_{1} \ldots l_{s}}^{k_{1} \ldots k_{r}} .
$$

If $T=L=\nabla J \in \Im_{2}^{1}(M)$, then the square norm $\|\nabla J\|^{2}$ of ∇J is defined by:

$$
\|\nabla J\|^{2}=g^{i j} g^{k l} g_{m s}(\nabla J)_{i k}^{m}(\nabla J)_{j l}^{s}
$$

An almost anti-Hermitian structure (M, g, J) is said to be isotropic anti-Kähler if $\|\nabla J\|^{2}=0$. The notion of isotropic Kähler structure is originally introduced in [1]. Some examples of isotropic anti-Kähler structures were given in [2]. From definition of isotropic anti-Kähler we have $\nabla J \neq 0$, in general. Conversely, from property $\nabla J=0$, we immediately see that $\|\nabla J\|^{2}=0$, i.e. the anti-Kähler manifold is isotropic anti-Kähler.

Let now $R(X, Y)=\left[\nabla_{X}, \nabla_{Y}\right]-\nabla_{[X, Y]}$ be the curvature operator of the Levi-Civita connection ∇ on an anti-Kähler-Codazzi manifold. Then the Ricci tensor S is defined as $S(X, Y)=\operatorname{trace}\{Z \rightarrow R(Z, X) Y\}$. The Ricci* tensor field ${ }_{S}^{*}$ of the anti-KählerCodazzi manifold is locally defined by:

$$
\stackrel{*}{S}_{i j}=-R_{h j t l} G^{l h} J_{i}^{t}
$$

where $G^{l h}=J_{s}^{l} g^{s h}\left(G_{i s} G^{s j}=-\delta_{i}^{j}\right)$ and $R_{h j t l}$ are the covariant components of curvature tensor R. The fact that if an anti-Kähler-Codazzi manifold is anti-Kähler $(\nabla J=0)$, then $S=\stackrel{*}{S}$, is proved in [3]. The main result of this paper is the following.

Theorem 1. An anti-Kähler-Codazzi manifold is isotropic anti-Kähler $\left(\|\nabla J\|^{2}=0\right)$ if and only if $S=\stackrel{*}{S}$, where S and $\stackrel{*}{S}$ are the Ricci and Ricci* tensor fields, respectively.

3. Proof of the theorem

Eq. (1) locally is equivalent to:

$$
\nabla_{k} G_{i j}-\nabla_{i} G_{k j}=0
$$

From here, using contraction with $G^{i j}$, we find:

$$
\begin{equation*}
\left(\nabla_{i} G_{k j}\right) G^{i j}=0 \tag{2}
\end{equation*}
$$

by virtue of $\left(\nabla_{k} G_{i j}\right) G^{i j}=0$. In fact, since $G_{i j} G^{i j}=-\delta_{i}^{i}=-2 n$, we have:

$$
\begin{aligned}
& \left(\nabla_{k} G_{i j}\right) G^{i j}+G_{i j} \nabla_{k} G^{i j}=0, \\
& \left(\nabla_{k} G_{i j}\right) G^{i j}+J_{i}^{s} g_{s j} \nabla_{k}\left(J_{t}^{i} g^{t j}\right)=\left(\nabla_{k} G_{i j}\right) G^{i j}+J_{j}^{s} g_{i s} \nabla_{k}\left(J_{t}^{i} g^{t j}\right) \\
& \quad=\left(\nabla_{k} G_{i j}\right) G^{i j}+J_{j}^{s} g^{t j} \nabla_{k}\left(J_{t}^{i} g_{i s}\right)=\left(\nabla_{k} G_{i j}\right) G^{i j}+G^{s t} \nabla_{k} G_{s t} \\
& \quad=2\left(\nabla_{k} G_{i j}\right) G^{i j}=0 .
\end{aligned}
$$

Applying ∇_{l} to Eq. (2), we obtain:

$$
\begin{equation*}
\left(\nabla_{l} \nabla_{i} G_{k j}\right) G^{i j}+\left(\nabla_{k} G_{i j}\right) \nabla_{l} G^{i j}=0 \tag{3}
\end{equation*}
$$

by virtue of (1). Using the contraction with $g^{k l}$, from (3) we have:

$$
\begin{align*}
g^{k l}\left(\nabla_{l} \nabla_{i} G_{k j}\right) G^{i j}+g^{k l}\left(\nabla_{k} G_{i j}\right) \nabla_{l} G^{i j} & =\left(\nabla^{k} \nabla_{k} G_{i j}\right) G^{i j}+g^{k l}\left(\nabla_{k}\left(g_{i s} J_{j}^{s}\right)\right) \nabla_{l}\left(g^{i t} J_{t}^{j}\right) \\
& =\left(\nabla^{k} \nabla_{k} G_{i j}\right) G^{i j}+g^{k l} g_{i s}\left(\nabla_{k} J_{j}^{s}\right)\left(\nabla_{l}\left(g^{t j} J_{t}^{i}\right)\right) \\
& =\left(\nabla^{k} \nabla_{k} G_{i j}\right) G^{i j}+g^{k l} g_{i s} g^{t j}\left(\nabla_{k} J_{j}^{s}\right)\left(\nabla_{l} J_{t}^{i}\right) \\
& =\left(\nabla^{k} \nabla_{k} G_{i j}\right) G^{i j}+\|\nabla J\|^{2}=0, \tag{4}
\end{align*}
$$

where $\|\nabla J\|^{2}$ is the square norm of ∇J. In an anti-Kähler-Codazzi manifold, the complex structure J satisfies (see [3]):

$$
\nabla_{h} \nabla_{j} J_{i}^{h}=\left(S_{j k}-\stackrel{*}{S}_{j k}\right) J_{i}^{k}
$$

which is equivalent to the following equation:

$$
\begin{equation*}
\nabla^{k} \nabla_{k} G_{i j}=\left(S_{j k}-\stackrel{*}{S}_{j k}\right) J_{i}^{k} \tag{5}
\end{equation*}
$$

by virtue of:

$$
\nabla_{h} \nabla_{j} J_{i}^{h}=\delta_{h}^{s} \nabla_{S} \nabla_{j}\left(G_{i k} g^{k h}\right)=g^{k s} \nabla_{S} \nabla_{j} G_{i k}=\nabla^{k} \nabla_{k} G_{j i}
$$

Substituting (5) into (4), we find:

$$
\left(S_{j k}-\stackrel{*}{S}_{j k}\right) g^{j k}=\|\nabla J\|^{2}
$$

This means that a necessary and sufficient condition for an anti-Kähler-Codazzi manifold to reduce to an isotropic antiKähler manifold is that $S=\stackrel{*}{S}$. Thus the proof is complete.

Acknowledgement

The paper was supported by TUBITAK project TBAG-112T111.

References

[1] E. García-Río, Y. Matsushita, Isotropic Kähler structures on Engel 4-manifolds, J. Geom. Phys. 33 (2000) 288-294.
[2] A. Salimov, Tensor Operators and Their Applications, Nova Science Publishers, New York, 2012.
[3] A. Salimov, S. Turanli, Curvature properties of anti-Kähler-Codazzi manifolds, C. R. Acad. Sci. Paris, Ser. I 351 (5-6) (2013) 225-227.
[4] S. Tachibana, Analytic tensor and its generalization, Tohoku Math. J. 12 (2) (1960) 208-221.

[^0]: E-mail addresses: asalimov@atauni.edu.tr (A. Salimov), kakbulut@atauni.edu.tr (K. Akbulut), sibelturanli@hotmail.com (S. Turanli).
 1631-073X/\$ - see front matter © 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
 http://dx.doi.org/10.1016/j.crma.2013.09.020

