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r é s u m é

Le théorème principal reliant les hamiltoniens convexes et les solutions de viscosité
semicontinues, due à Barron et Jensen, est étendu aux hamiltoniens quasi-convexes.
Quelques applications sont indiquées.

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

In 1990, an extension of the Crandall–Lions notion of viscosity solutions for first order Hamilton–Jacobi equations was
presented in [4]. This extension showed that when the Hamiltonian is convex in the gradient variable, touching the function
from below and testing to see if the result gives zero, i.e., p ∈ D−u(x) �⇒ H(x, u(x), p) = 0 is equivalent to the Crandall–
Lions definition. This was important because, for lower semicontinuous functions, we may only be able to touch from below,
and many problems only have semicontinuous solutions. The comparison principle for semicontinuous solutions was estab-
lished in [4]. In 1993, H. Frankowska developed in [8] a nonsmooth approach to the uniqueness of semicontinuous viscosity
solutions.

The aim of this note is to show that the idea of the connection between convex Hamiltonians and semicontinuous
solutions extends to quasiconvex (equivalently, level convex) Hamiltonians, a much broader class of functions. Essentially all
of the convex Hamiltonian results may be extended to quasiconvex Hamiltonians, except for one significant class, namely
equations of the form ut + H(t, x, u, Du) = 0. Assuming such an equation is quasiconvex in (ut , Du) will force H to be
convex in Du. Thus, finite-horizon Bolza or Lagrange problems are not covered. On the other hand, equations of the form
λu + H(x, u, Du) = 0 and time-dependent equations arising in optimal stopping and L∞ control and calculus of variations
problems are covered. Some applications for L∞ problems are presented, as well as a representation result for a viscosity
solution of H(x, u, Du) = 0.
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2. Semicontinuous solutions for quasiconvex Hamiltonians

The problem we consider is:

H
(
x, u(x), Du(x)

) = 0, x ∈ Ω ⊂R
n. (2.1)

In this paper, we will focus on Hamiltonians that are quasiconvex (also called level convex) in p:

H
(
x, r, λp + (1 − λ)q

)
� max

{
H(x, r, p), H(x, r,q)

}
, 0 � λ � 1. (2.2)

Equivalently, Eα(x, r) = {p ∈ R
n | H(x, r, p) � α} is convex for all α ∈ R. One of the fundamental features of quasiconvex

functions is the extended Jensen inequality.

Proposition 2.1. (See [4,6].) Let A⊂ R
n be convex and f :A→R be quasiconvex and μ be a probability measure on A. Then:

f

(∫
ϕ(x)dμ(x)

)
�μ − ess sup

x∈A
f
(
ϕ(x)

)
(2.3)

for any ϕ ∈ L1(μ).

Proof. Consider Eα = {z ∈ A | f (z) � α = μ − ess supx∈A f (ϕ(x))}. Since f is quasiconvex, Eα is convex and ϕ(x) ∈ Eα for
μ − almost all x ∈A. But then

∫
ϕ(x)dμ(x) ∈ Eα . �

Definition 2.2 (Crandall–Lions). A bounded function u is a viscosity subsolution of (2.1) if p ∈ D+uusc(x) implies
Hlsc(x, u, p) � 0, and is a viscosity supersolution of (2.1) if p ∈ D−ulsc(x) implies Husc(x, ulsc, p) � 0. Here a subscript
lsc refers to the lower semicontinuous envelope of the function, and a superscript usc denotes the upper semicontinuous
envelope.

Our goal in this section is to prove the following theorem. This extends one of the main theorems in [4] to quasiconvex
Hamiltonians.

Theorem 2.3. Let H(x, r, p) be continuous and satisfy p �→ H(x, r, p) is quasiconvex and∣∣H(x, r, p) − H(y, s, p)
∣∣�ω

(|x − y|(|p| + 1
) + |r − s|), x ∈ Ω ⊂ R

n, r ∈R, p ∈R
n, (2.4)

for ω ∈ C(R+,R+), ω(0) = 0. Then a uniformly continuous function u : Ω →R is a Crandall–Lions solution of H(x, u(x), Du(x)) = 0,
x ∈ Ω , if and only if

x ∈ Ω, p ∈ D−u(x) �⇒ H
(
x, u(x), p

) = 0. (2.5)

For brevity and in view of the literature since the introduction of such semicontinuous solutions in [4], we will refer to u
as a BJ solution if it satisfies the condition (2.5).

There are two steps to prove this theorem. The first one assumes the stronger condition that u is Lipschitz.

Proposition 2.4. Let u ∈ Lip(Ω) and assume p �→ H(x, r, p) is quasiconvex. Assume (see Ishii [9]) the condition:

H is continuous and ∀R > 0, lim sup
ε→0

{∣∣H(y, s, p) − H(x, r, p)
∣∣∣∣|y − x| < ε, |r − s| < ε, |p| � R

} = 0. (2.6)

Then u is a Crandall–Lions viscosity subsolution of H(x, u, Du) � 0 if and only if u satisfies the condition p ∈ D−u(x) �⇒
H(x, u(x), p) � 0, i.e., u is a BJ subsolution.

Proof. We use Ishii’s [9] improved formulation of Theorem 1.1 in [4] that if u is bounded and lower semicontinuous (re-
spectively, upper semicontinuous), then:

D+u(x) ⊂
⋂
r>0

co

( ⋃
|x−y|<r

D−u(y)

)
, respectively, D−u(x) ⊂

⋂
r>0

co

( ⋃
|x−y|<r

D+u(y)

)
. (2.7)

Assume u is a Crandall–Lions subsolution. By (2.7), if p ∈ D−u(x), there is sequence pk → p, and {xi}, {λi}, {qi},
i = 1,2, . . . , N(k), ∃N(k) ∈ Z

+ , such that |x − xi | < 1
k , qi ∈ D+u(xi), 0 � λi � 1, and pk = ∑

λiqi ,
∑

λi = 1. Thus

H(xi, u(xi),qi) � 0. Observe that |qi| � Lip(u). Then, using (2.6), one shows H(x, u(x),qi) � o( 1
k ) → 0 as k → ∞, 1 � i � N .

By quasiconvexity,
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H
(
x, u(x), pk

) = H

(
x, u(x),

N(k)∑
i=1

λiqi

)
� max

1�i�N(k)
H

(
x, u(x),qi

)
� o

(
1

k

)
.

Sending k → ∞ we get H(x, u(x), p) � 0. The converse can be shown in a similar way using the first part of (2.7). �
Remark 2.5. An insight of Barles [3, Theorem 5.12] for the convex case makes transparent in the original convex case,
and now in the quasiconvex case, why the theorem is true without requiring knowledge of (2.7). If u is Lipschitz and
H(x, u(x), Du(x)) � 0 for almost every x ∈ Ω , then if H is quasiconvex in p, it must be the case that u is a viscosity
supersolution of −H(x, u, Du) = 0 in Ω . Here is how his idea works.

Let ρ be a C∞(Rn) regularizing kernel with ρ � 0,
∫
Rn ρ dx = 1. Setting ρε(x) = ε−nρ(x/ε) and uε = u ∗ ρε , we have:

H
(
x, u(x), Duε(x)

)
� H

(
x, uε(x), Duε(x)

) + o(1)

= H

(
x, uε(x),

∫
Ω ′

Du(y)ρε(x − y)dy

)
+ o(1)

�μ − ess sup
y∈Ω ′

H
(

y, u(y), Du(y)
) + o(1)

� o(1) → 0, as ε → 0,

in Ω ′ � Ω . Here one uses the condition (2.6), |Du|� R , Proposition 2.1 and the fact that μ(A) = ∫
A ρε(x)dx is a probability

measure, absolutely continuous with respect to Lebesgue measure.
Consequently, uε is a classical subsolution of H(x, uε, Duε) − o(1) = 0 and hence a classical supersolution of

−H(x, uε, Duε) + o(1) � 0. By the Barles–Perthame stability results, u = lim∗
ε→0 uε is a viscosity supersolution of

−H(x, u, Du) � 0 in Ω . Observe how this argument would fail if we had an equation of the form ut + H(Du) = 0 with
p �→ H(p) quasiconvex.

Using inf and sup convolutions, the proof of Theorem 2.3 now follows the same proof as the details in [2, Theorem 5.6]
or [3, Theorem 2.2], with minor modifications.

Remark 2.6. As noted earlier, Theorem 2.3 does not apply to Hamilton–Jacobi equations of the form ut + H(x, u, Du) = 0.
The reason is the following lemma:

Lemma 2.7. Consider the function f (x, y) = g(x) + h(y) where h is linear. The function f is quasiconvex in (x, y) if and only if g is
convex.

Proof. This is Lemma 5.1 in [7]. �
As a result of this lemma, if one assumes (pt , px) → pt + H(t, x, px) is quasiconvex, we are back in the case when

the Hamiltonian is assumed convex and there is nothing new. On the other hand, the theorem does apply to stationary
Hamilton–Jacobi equations u + H(x, u, Du) = 0 and Hamilton–Jacobi equations involving optimal stopping or L∞ control
problems (see below).

We state the following theorem whose proof, given Theorem 2.3, is a minor modification to that in Barles [3, Theo-
rem 5.14] and Bardi and Capuzzo-Dolcetta [2, Theorem 5.5]. First we give Soravia’s [10] definition of a BJ solution for a
Dirichlet problem.

Definition 2.8. Let g be lower semicontinuous (lsc) on R
n . The lsc function u is a BJ solution of u + H(x, u, Du) = 0,

x ∈ Ω , u = g , x ∈ ∂Ω , if x ∈ Ω , p ∈ D−u(x) �⇒ u(x) + H(x, u(x), p) � 0, u = g , for x ∈ Ωc , and x ∈ R
n , p ∈ D−u(x) �⇒

−u − H(x, u(x), p) � 0.

Theorem 2.9. Assume the conditions that for constants C x
H , Cr

H , C p
H > 0, r �→ H(t, x, r, p) is nondecreasing, p �→ H(x, r, p) is quasi-

convex, and:∣∣H(x, r, p) − H(y, r, p)
∣∣ � C x

H

(
1 + |p|)|x − y|, ∣∣H(x, r, p) − H(x, s, p)

∣∣ � Cr
H |r − s|,∣∣H(x, r, p) − H(x, r,q)

∣∣ � C p
H

(
1 + |x|)|p − q|.

Suppose that u is bounded lsc on R
n, v is bounded lsc on Ω , with u satisfying x ∈ R

n, p ∈ D−u(x) �⇒ u + H(x, u, p) � 0 and v
satisfying x ∈ Ω , p ∈ D−v(x) �⇒ v + H(x, v, D v) � 0. If u � v on ∂Ω , then u � v in Ω .
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Sketch of proof. This uses Barles’ idea of modified convolutions. Let uε(t, x) = infy∈Rn u(y) + e−Kt |x−y|2
ε2 . Then uε is a

Crandall–Lions subsolution of uε,t + uε + H(x, uε, Duε) � C x
HεeKt/2m0, (t, x) ∈ R

n+1, where m0 is a constant depend-

ing only on the supremum bound of u. Indeed, let yε ∈ arg min(u(y) + e−Kt |x−y|2
ε2 ). Then u(yε) + H(yε, u(yε), pε) � 0,

pε = 2e−Kt(x − yε)/ε
2, and |x − yε| � εeKt/2m0. Then

uε,t + uε + H(x, uε, Duε) � e−Kt |x − yε|2
ε2

(−K + 2C x
H + Cr

h + 1
) + C x

H |x − yε|
� C x

HεeKt/2m0, choosing K = 2C x
H + 1 + C u

H .

The rest of the proof is almost exactly the same as [2, Theorem 5.5, p. 346]. �
2.1. Applications

Quasiconvex Hamiltonians occur in many physical problems, but here we sketch the main application arising in control
theory of the following form:

H(x, r, p) = max
z∈Z

min
{
λr − f (x, z) · p − k(x, z), r − h(x, z)

}
, x ∈ Ω ⊂R

n, λ > 0 (2.8)

or, for (t, x) ∈ (0,∞) ×R
n

H
(
t, x, r, (pt , px)

) = max
z∈Z

min
{

pt − f (t, x, z) · px − k(t, x, z), r − h(t, x, z)
}
. (2.9)

Proposition 2.10. The Hamiltonians in (2.8)–(2.9) are quasiconvex in the p variable.

Proof. We will show that (2.9) is quasiconvex in p = (pt , px). Since (t, x, r) are fixed, it is sufficient to show η(p) =
maxz(pt − px · y(z) − w(z)) ∧ γ (z) is quasiconvex. Fix z ∈ Z . Let β ∈ R. If γ (z) � β then Eβ = {p = (pt , px) ∈ R

n+1 |
(pt − px · y(z) − w(z)) ∧ γ (z) � β} = R

n+1. If γ (z) > β , Eβ = {pt − px · y(z) − w(z) � β} is a halfspace in R
n+1 and so

convex. Since the maximum of a collection of quasiconvex functions is quasiconvex, η(p) is quasiconvex. �
The solution of H(x, u, Du) = 0 in (2.8) or H(t, x, u, ut, Du) = 0 in (2.9) is given as the value function of an optimal control
problem in L∞ . For example, the solution of H(t, x, u, ut, Du) = 0 in (0,∞)×R

n , u(0, x) = g(x)∨ minz h(0, x, z) is given by:

u(t, x) = inf
ζ∈Z[0,t] ess sup

s∈[0,t]

(
h
(
s, ξ(s), ζ(s)

) +
s∫

0

k
(
τ , ξ(τ ), ζ(τ )

)
dτ

)
∨

(
g
(
ξ(t)

) +
t∫

0

k
(
τ , ξ(τ ), ζ(τ )

)
dτ

)
.

Here ξ̇ = f (τ , ξ, ζ ), ξ(0) = x and Z[0, t] is the class of control functions ζ : [0, t] → Z . The relaxed version, i.e., with
z �→ h(t, x, z) quasiconvex and z �→ k(t, x, z) convex result in a value function u which is the unique lower semicontinuous
BJ solution of H(t, x, u, ut, Du) = 0 satisfying the initial condition. Details for the case k = 0 can be found in [6].

Remark 2.11. It is reasonable to ask if we may represent the solution of general Hamilton–Jacobi equations as the value
function of such a control problem. This can be worked out for a wide class of equations. We recall the relevant notion of
quasiconvex conjugate introduced in Barron and Liu [6]. Assume a function f : Rn → R ∪ {−∞,∞} satisfies the condition:
For every γ < sup f , there is a continuous affine function which is a minorant of f on { f (x) � γ }. Given such a function,
define the symmetric conjugates:

f %(r, p) = sup
x∈Rn

(
p · x ∧ r − f (x)

) = sup
x∈Rn

(
p · x − f (x)

) ∧ (
r − f (x)

)
,

f %%(x) = sup
r∈R,p∈Rn

(
p · x ∧ r − f %(r, p)

)
. (2.10)

It is proved in [1,5] that a lower semicontinuous function f satisfying the condition is quasiconvex if and only if f = f %%.
We give an example of a result possible for the stationary case. We are given H : Rn ×R×R

n → R with p �→ H(x, r, p)

quasiconvex and r �→ H(x, r, p) nondecreasing. Define H%(x, z) = supr,p{(p · z ∧ r − H(x, r, p))}. Then motivated by the qua-
siconvex conjugates (2.10), we have H(x, r, p) = supz∈Rn (p · z − H%(x, z)) ∧ (r − H%(x, z)). Then z �→ H%(x, z) is quasiconvex.
With this representation for H , we have H(x, u, Du) = supz∈Rn (z · Du − H%(x, z)) ∧ (u − H%(x, z)). Now we may represent a
viscosity solution of H(x, u, Du) = 0 in R

n as:

u(x) = inf
ξ(·), ξ(0)=x

ess sup
s∈[0,∞)

(
H%(

ξ(s), −ξ̇ (s)
) +

s∫
H%(

ξ(τ ), −ξ̇ (τ )
)

dτ

)
.

0
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This is similar to the classic Lax–Oleinik formula, but our formula includes u dependence which does not arise as simply
a discount factor. Similar representation formulas are possible for the Dirichlet problem. Variations of the conjugates given
in [1] give formulas for time-dependent problems with convex Hamiltonians and u dependence. This will be considered
elsewhere.
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