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We study rigidity properties of certain homomorphisms from right-angled Artin groups to
mapping class groups. As an application, we show that if Γ ⊂ Map(S) is a subgroup that
contains some power of every Dehn twist, then any injective homomorphism Γ → Map(S)

is a restriction of an automorphism of Map(S).
© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Nous examinons la rigidité de certains homomorphismes entre groupes d’Artin rectangu-
laires et groupes modulaires. Nous démontrons que, si Γ ⊂ Map(S) est un sous-groupe
qui contient quelque puissance de tout twist de Dehn, alors tout homomorphisme injectif
Γ → Map(S) est la restriction d’un automorphisme de Map(S).

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Version française abrégée

Soit S une surface connexe et orientable, de genre g et avec n pointes. Nous supposerons que S est non exceptionnelle,
c’est-à-dire que 3g + n � 5 et (g,n) �= (1,2). Le groupe modulaire étendu Map∗(S) est le groupe de difféomorphismes de
S à isotopie près. Le groupe modulaire Map(S) est le sous-groupe d’indice 2 en Map∗(S) dont les éléments sont représen-
tés par les difféomorphismes préservant l’orientation de S . Finalement, le groupe modulaire pur P Map(S) ⊂ Map(S) est le
sous-groupe des éléments de Map(S) qui fixent chaque pointe de S .

Le groupe d’Artin rectangulaire A(X) associé à un complexe simplicial X est le groupe engendré par l’ensemble X (0) des
sommets de X , et tel que les éléments correspondant à deux sommets voisins commutent. On remarque que, si � ⊂ X est
un simplex, alors A(�) est un sous-groupe de A(X) isomorphe à Zdim(�)+1.

Dans cet article, on s’intéresse aux homomorphismes faiblement injectifs ρ : A(X) → Map(S), où X est un sous-complexe
rigide [1] du complexe des courbes C(S) de S [14]. Ici, nous disons que X ⊂ C(S) est rigide si toute application injective et
simpliciale ω : X → C(S) est la restriction d’un automorphisme de C(S). Un homomorphisme ρ est faiblement injectif si,
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pour tous les simplexes �,�′ ⊂ X et pour tous les éléments γ ∈ A(�), γ ′ ∈A(�′), si ρ(γ ) = ρ(γ ′), alors γ = γ ′ . Dénotant
par δγ le twist de Dehn le long de γ ∈ C(S), on montre :

Théorème 1. Soit S unesurface connexe, orientable et non exceptionnelle. Soit aussi X ⊂ C(S) un sous-complexe rigide avec dim(X) =
dim(C), et tel que chaque simplexe de X est l’intersection des simplexes de dimension maximale de X qui le contiennent. Pour tout
homomorphisme faiblement injectif ρ : A(X) → Map(S), il existe f ∈ Map∗(S) et des fonctions a,b : X (0) → Z \ {0} telles que

ρ(γ a(γ )) = f δb(γ )
γ f −1 pout tout γ ∈ X (0) . De plus, f est unique si S n’est pas la surface fermée de genre 2.

Nous remarquons qu’il y a des constructions d’ensembles rigides finis de C(S) [1] qui satisfont les hypothèses du Théo-
rème 1. Par exemple, soit Xn le complexe simplicial dont les simplexes de dimension k correspondent aux ensembles de
k+1 diagonales disjointes du polygone avec n sommets. Pour n � 5, Xn est un sous-complexe rigide du complexe de courbes
de la sphère S0,n avec n pointes [1]. Donc, si ρ0 : A(Xn) → P Map(S0,n) est l’homomorphisme faiblement injectif donné par
ρ0(γ ) = δγ pour tout γ , alors tout homomorphisme injectif ρ : A(Xn) → P Map(S0,n) a la forme ρ(·) = f ((ρXn ◦ τ )(·)) f −1,
où f ∈ Map∗(S0,n) et τ : A(Xn) → A(Xn) est un monomorphisme.

Par ailleurs, le complexe des courbes lui-même est rigide [22]. En lui appliquant le Théorème 1, on montre :

Corollaire 2. Soit S une surface connexe, orientable et non exceptionnelle, autre que la surface fermée de genre 2. Soit aussi Γ ⊂
Map(S) un sous-groupe tel que, pour toute γ ∈ C(S), il y a n(γ ) ∈ N avec δ

n(γ )
γ ∈ Γ . Pour tout homomorphisme injectif σ : Γ →

Map(S), il existe un unique élément f ∈ Map∗(S) tel que σ(g) = f g f −1 pour tout g ∈ Γ .

Rappelons que si S a pour genre au moins 3, les noyaux des homomorphismes du groupe modulaire dans des groupes
de Lie compacts – par exemple les représentations quantiques [21] – satisfont la condition du Corollaire 2 [3].

On observe aussi que le Corollaire 2 implique que le groupe Γ est cohopfien et que son commensurateur abstrait est
isomorphe à Map∗(S). Ces résultats sont déjà connus pour le group de Torelli [11] et pour quelques autres sous-groupes
normaux de Map(S) d’indice infini [8,9]. Toutefois, la rigidité qu’on trouve dans le Corollaire 2 est bien plus forte que ce
qu’on connaît dans ces cas-là : ici on ne suppose pas que σ(Γ ) ⊂ Γ , ni que Γ et σ(Γ ) soient commensurables.

1. Introduction

Let S be a connected, orientable surface of genus g with n punctures. Throughout this note, we will assume that S
is non-exceptional, that is, 3g + n � 5 and (g,n) �= (1,2). Denote by Map∗(S) the extended mapping class group, that is the
group of isotopy classes of self-diffeomorphisms of S . The mapping class group Map(S) ⊂ Map∗(S) is the index 2 subgroup
consisting of isotopy classes of those diffeomorphisms that preserve the orientation of S; finally, the pure mapping class group
P Map(S) ⊂ Map(S) is the subgroup of those mapping classes fixing each puncture of S .

Given a simplicial complex X , the right-angled Artin group A(X) associated with X is the group generated by the set X (0)

of vertices of X , which verifies that γi, γ j ∈ X (0) commute if and only if they are adjacent in X . Note that every simplex �

of X determines an Abelian subgroup A(�) of A(X), isomorphic to Zdim(�)+1.
In this note, we are interested in homomorphisms from right-angled Artin groups to mapping class groups. We remark

that there are numerous examples of such homomorphisms: for instance, if X �= ∅, then A(X) surjects onto Z, and hence we
obtain infinitely many homomorphisms A(X) → Map(S). In addition, so long as X has at least two non-adjacent vertices,
A(X) surjects onto the non-Abelian free group of rank 2 and thus we obtain still more homomorphisms A(X) → Map(S).
Observe, however, that the homomorphisms just described fail to be injective. On the other hand, Koberda [18] and Clay,
Leininger and Mangahas [10] showed that every finitely generated right-angled Artin group embeds as a subgroup of some
mapping class group.

Below, we will prove a rigidity result for a certain class of homomorphisms A(X) → Map(S), called weakly injective, in
the case when X is a rigid subset of the curve complex C(S). We need a couple of definitions before stating our main result:

Definition (Weak injectivity). Let X be a simplicial complex, and G a group. A homomorphism ρ : A(X) → G is weakly
injective if the following holds: for all simplices �,�′ ⊂ X , and for all γ ∈ A(�), γ ′ ∈A(�′), if ρ(γ ) = ρ(γ ′) then γ = γ ′ .

Recall that the curve complex C(S) is the simplicial complex whose k-simplices correspond to sets of k + 1 distinct free
isotopy classes of essential simple closed curves on S with pairwise disjoint representatives [14]. Denote by δγ the right
Dehn twist along the simple closed curve γ ∈ C(S). If X ⊂ C(S) is an arbitrary subcomplex, then the homomorphism:

ρ0 : A(X) → Map(S), ρ0(γ ) = δγ for every vertex γ ∈ X (0) (1)

is weakly injective; see [12], in particular Section 3.3, for basic facts about Dehn twists. Note, however, that the map ρ0 is
not injective in general; compare with [13]. As mentioned earlier, we will be interested in subcomplexes of C(S) that are
rigid.
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Definition (Rigid subcomplex). A simplicial subcomplex X of C(S) is rigid if, for every injective simplicial map ω : X → C(S),
there is an automorphism φ ∈ Aut(C(S)) of C(S) with ω(γ ) = φ(γ ) for all γ ∈ X (0) .

Since S is assumed to be non-exceptional, the combination of results of Ivanov [17], Korkmaz [19], and Luo [20], implies
that every automorphism of C(S) is induced by an element of Map∗(S). Furthermore, if S is not the closed surface of
genus 2, then the said element is unique – see [20].

We are finally ready to state our main result:

Theorem 1. Let S be a connected, orientable, and non-exceptional surface. Suppose that X is a rigid subcomplex of C(S), with
dim(X) = dim(C(S)), and such that every simplex of X is equal to the intersection of all maximal dimensional simplices of X that
contain it. For every weakly injective homomorphism ρ :A(X) → Map(S), there are f ∈ Map∗(S) and functions a,b : X (0) → Z \ {0}
with ρ(γ a(γ )) = f δb(γ )

γ f −1 , for every γ ∈ X (0) . Moreover, f is unique unless S is a closed surface of genus 2.

The equality ρ(γ a(γ )) = f δb(γ )
γ f −1 asserts that ρ(γ ) is a root of a power of the Dehn twist along f (γ ). In the absence of

roots – for instance if ρ takes values is the pure mapping class group P Map(S0,n) of the n-punctured sphere – we deduce
that ρ(γ ) is in fact a power of a Dehn twist; with the notation of Theorem 1 this means that a(γ ) = 1.

Concrete examples of finite rigid subsets of C(S0,n) were given in [1]. Indeed, the simplicial complex Xn , whose
k-simplices correspond to sets of k + 1 pairwise disjoint diagonals of the polygon with n vertices, is a rigid subcomplex
of C(S0,n) for n � 5. The complex Xn is the dual polytope to the associahedron, and hence every simplex is equal to the
intersection of all maximal dimensional simplices containing it. We thus deduce from Theorem 1 that, for n � 5, every
weakly injective homomorphism ρ : A(Xn) → P Map(S0,n) is of the form ρ(·) = f ((ρ0 ◦ τ )(·)) f −1, where f ∈ Map∗(S0,n),
ρ0 is as in (1), and τ : A(Xn) →A(Xn) is the injective homomorphism determined by τ (γ ) = γ b(γ ) for γ ∈ X

(0)
n .

We stress that in Theorem 1 we are not assuming that the subcomplex X be finite. In particular, applying the theorem
to X = C(S), which is itself rigid by the work of Shackleton [22], we prove:

Corollary 2. Let S be a connected, orientable, and non-exceptional surface, other than the closed surface of genus 2. Let Γ ⊂ Map(S)

be a subgroup such that for every γ ∈ C(S) there is n(γ ) ∈ N with δ
n(γ )
γ ∈ Γ . For every injective homomorphism σ : Γ → Map(S),

there is a unique f ∈ Map∗(S) such that σ(g) = f g f −1 , for all g ∈ Γ .

Since any finite index subgroup Γ ⊂ Map(S) automatically satisfies the hypothesis above, Corollary 2 implies the results
in [4,5,15,16,22] about injections of finite index subgroups of mapping class groups.

In addition, there are numerous subgroups Γ ⊂ Map(S) of infinite index that satisfy the condition of Corollary 2, for
example the kernel of any representation of Map(S) to a compact Lie group, provided that S has genus at least 3 – see
Corollary 2.6 of [3]. This applies for instance to the so-called quantum representations [21] of Map(S), many of which have
infinite image. Note also that Corollary 2 implies that the subgroup Γ is co-Hopfian, and that its abstract commensurator
is isomorphic to Map∗(S). Such results were already known for the Torelli group [11], as well as for other infinite index
normal subgroups of Map(S) [8,9]. However, we remark that the rigidity statement in Corollary 2 is more powerful than
any of the existing ones, since we do not assume that σ(Γ ) ⊂ Γ , or that Γ and σ(Γ ) are commensurable.

2. Abelian subgroups of the mapping class group

We recall a few standard facts about Abelian subgroups of the mapping class group. See [12] for basic facts on the
mapping class group and [7] for details on its Abelian subgroups.

Let S be a connected orientable surface, and A an Abelian subgroup of Map(S). By the rank of A, we understand the
dimension of A ⊗ZQ as a Q-vector space. A reducing system for A is an A-invariant multicurve λ ⊂ S . If there is no reducing
system for A, then A contains a pseudo-Anosov and hence rank(A) = 1. Thus, every Abelian subgroup A of Map(S) with
rank(A) � 2 is reducible. Given any reducing system λ for A, we have the exact sequence:

1 → A ∩Tλ → A → Map(S \ λ), (2)

where Tλ is the group generated by the Dehn twists along the components of λ (or half-twists in the case when the given
component bounds a twice-punctured disk or a once-punctured torus). We say that λ is a complete reducing system for A if,
for every component W of S \ λ, either:

(a) there are d > 0 and f in the image of the third homomorphism in (2), such that f d(W ) = W and f d|W is pseudo-
Anosov, or

(b) there is d > 0 with f d|W = Id for every f in the image of the third homomorphism in (2).

There is a unique complete reducing system λ(A) for A, the canonical reducing system [7], contained in every other complete
reducing system for A. The active surface S(A) of A is the union of those components of S \ λ(A) for which (a) above is
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satisfied. Noting that no component of S(A) is homeomorphic to a three-times punctured sphere, the pigeonhole principle
and (2) together imply:

Fact 1. Suppose that S has genus g and n punctures. Every Abelian subgroup A of Map(S) satisfies rank(A) � 3g + n − 3 =
dim(C(S)) + 1. Moreover, in the equality case, one has:

(1) 3g + n − 3 = l(A) + s(A), where l(A) and s(A) are, respectively, the number of components of λ(A) and S(A);
(2) every component of S(A) is homeomorphic to either a once-punctured torus or a four-times punctured sphere;
(3) the group A does not permute the components of λ(A) (resp. S(A)).

Suppose now that f ∈ Map(S) has infinite order and is contained in some Abelian subgroup A < Map(S) of maximal
rank. In particular, f is not pseudo-Anosov and thus λ(〈 f 〉) �= ∅. Moreover, observe that λ(〈 f 〉) ⊂ λ(A), and that S(〈 f 〉) is
a union of connected components of S(A). Moreover, both λ(〈 f 〉) and S(〈 f 〉) are preserved by the centralizer ZMap(S)( f )
of f . In fact, the subgroup of ZMap(S)( f ) that preserves each component of λ( f ) and each component of S \ λ( f ) has finite
index in ZMap(S)( f ) and contains 〈 f ,Tλ( f )〉 in its center. Notice that rank(〈 f ,Tλ( f )〉) � 2 unless S(〈 f 〉) = ∅ and λ( f ) has a
single component. Altogether we have:

Fact 2. Let S be a connected, orientable and non-exceptional surface. Suppose that f ∈ Map(S) has infinite order and is
contained in an Abelian group of maximal rank. Then, either f is a root of a power of a Dehn twist, or the centralizer of f
in Map(S) has a finite index subgroup G whose center Z(G) satisfies rank(Z(G)) � 2.

We can now prove:

Lemma 3. Let S be a connected, orientable, and non-exceptional surface. If {Ai}i∈I is a collection of maximal rank Abelian subgroups
of Map(S) such that rank(

⋂
Ai) = 1, then

⋂
Ai is a cyclic group generated by a root of a power of a Dehn twist.

Proof. First, it follows from Fact 1 and the work of Birman and Hilden [6] (see Theorem 2.8 of [2] for an explicit statement)
that the centralizer of a non-trivial finite-order element of Map(S) does not contain Abelian groups of maximal rank.
Therefore

⋂
Ai is torsion free, and hence cyclic.

Let G be a finite index subgroup of the centralizer of
⋂

Ai . Maximality of the rank of Ai implies that Z(G) ∩ Ai has
finite index in Z(G) for all i. In particular, also Z(G) ∩ (

⋂
Ai) has finite index in Z(G); this proves that Z(G) has rank 1.

By Fact 2,
⋂

Ai is generated by a root of a power of a Dehn twist, as claimed.

A remark on roots. We remark that if f is a half-twist along a curve that bounds a twice-punctured disk or a once-
punctured torus in S , then f is indeed contained in a maximal rank Abelian subgroup of Map(S). In fact, it is not difficult,
albeit not so interesting and slightly cumbersome, to prove that these are the only roots which can appear in Lemma 3 as
long as (g,n) �= (2,0). It follows that Theorem 1 can be marginally improved to assert that a(γ ) ∈ {1,2}.

3. Proofs

Before proving the results announced in the introduction, we need a preparatory observation:

Lemma 4. Let S be connected, orientable and non-exceptional surface. Suppose that X is a simplicial complex with dim(X) =
dim(C(S)), and whose every simplex is equal to the intersection of the maximal dimensional simplices of X that contain it. Then
every weakly injective homomorphism ρ : A(X) → Map(S) maps each standard generator of A(X) to a root of a power of a Dehn
twist along a single curve.

Proof. Let γ ∈ X (0) be a vertex, and consider the collection {�i}i∈I of maximal dimensional simplices of X that contain γ .
Our assumption implies that the cyclic group 〈γ 〉 is equal to

⋂
i A(�i). Since ρ is weakly injective, ρ(〈γ 〉) is also an infinite

cyclic subgroup of Map(S), which moreover satisfies:

ρ
(〈γ 〉) =

⋂

i

ρ
(
A(�i)

) ⊂ Map(S).

Now, rank(ρ(A(�i))) = rank(A(�i)) = dim(X) + 1 = dim(C(S)) + 1. We can hence apply Lemma 3 to {ρ(�i)}i∈I , thus de-
ducing that ρ(〈γ 〉) is generated by a root of a power of a Dehn twist, as we needed to prove. �

We are now ready to prove Theorem 1:

Proof of Theorem 1. By Lemma 4, ρ(γ ) is a root of a power of a Dehn twist along a single curve, for every γ ∈ X (0) . In
other words, there are ρ∗(γ ) ∈ C(S) and a(γ ),b(γ ) ∈ Z \ {0}, with:

ρ
(
γ a(γ )

) = δ
b(γ )

.
ρ∗(γ )
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Since the elements of A(X) corresponding to adjacent vertices γ ,η ∈ X (0) commute, ρ∗(γ ) and ρ∗(η) do not intersect.
Moreover, if γ , η are arbitrary distinct vertices of X , then ρ∗(γ ) �= ρ∗(η) because ρ is weakly injective. Therefore, we deduce
that the map ρ∗ : X → C(S) is an injective simplicial map. Since X ⊂ C(S) is assumed to be rigid, there is φ ∈ Aut(C(S))

with ρ∗(γ ) = φ(γ ) for all γ ∈ X . As S is not exceptional, the aforementioned results of Ivanov [17], Korkmaz [19] and Luo
[20] together imply that there is f ∈ Map∗(S) with φ(γ ) = f (γ ) for all γ ∈ C(S); moreover, f is unique unless S is a closed
surface of genus 2. Therefore, we obtain:

ρ
(
γ a(γ )

) = δ
b(γ )

ρ∗(γ ) = δ
b(γ )

f (γ )
= f δb(γ )

γ f −1

for all γ ∈ X (0) , as desired. �
Finally, we prove Corollary 2:

Proof of Corollary 2. Let σ : Γ → Map(S) be an injective homomorphism, and ρ : A(C(S)) → Map(S) the homomorphism
ρ(γ ) = δ

n(γ )
γ , noting that its image is contained in Γ . Hence, we can also consider the homomorphism:

ρ ′ = σ ◦ ρ : A(
C(S)

) → Map(S).

As S is assumed to be non-exceptional, C(S) is rigid [22] and thus Theorem 1 implies that there are f ∈ Map∗(S) and
functions a,b : C(S) → Z \ {0} with ρ ′(γ a(γ )) = f δb(γ )

γ f −1 for every γ ∈ C(S). Moreover, f is unique since S is not the
closed surface of genus 2. Conjugating σ by f −1, we may in fact assume that:

ρ ′(γ a(γ )
) = δ

b(γ )
γ

for every vertex γ ∈ C(S). After this normalization, σ maps roots of powers of Dehn twists along a curve to roots of powers
of Dehn twists along the same curve. We claim that σ(h) = h for every h ∈ Γ . Indeed, note that for every h ∈ Γ and
γ ∈ C(S) there are a,b, c ∈ Z such that:

δa
h(γ ) = σ

(
δb

h(γ )

) = σ
(
hδb

γ h−1) = σ(h)σ
(
δb
γ

)
σ(h)−1 = σ(h)δc

γ σ (h)−1 = δc
σ (h)(γ ).

This proves, in particular, that h(γ ) = σ(h)(γ ). Since γ ∈ C(S) was arbitrary and S is not the closed surface of genus 2, it
follows that σ(h) = h, as we needed to prove. �
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