Partial differential equations

Lower bounds for the blow-up time in the higher-dimensional nonlinear divergence form parabolic equations

Bornes inférieures du temps d’explosion des solutions d’équations paraboliques non linéaires sous forme de divergence dans des espaces de grande dimension

Khadijeh Baghaei a, Mahmoud Hesaaraki b

a Department of Mathematics, Iran University of Science and Technology, Tehran, Iran
b Department of Mathematics, Sharif University of Technology, Tehran, Iran

Abstract

This paper deals with the blow-up of solutions to some nonlinear divergence form parabolic equations with nonlinear boundary conditions. We obtain a lower bound for the blow-up time of solutions in a bounded domain \(\Omega \subseteq \mathbb{R}^n, n \geq 3 \).

Résumé

L’article traite d’un problème d’explosion des solutions d’équations paraboliques non linéaires sous forme de divergence, avec des conditions aux limites non linéaires. On obtient une estimation d’une borne inférieure du temps d’explosion des solutions dans le cas d’un domaine borné \(\Omega \subseteq \mathbb{R}^n, n \geq 3 \).

1. Introduction

In this paper, we obtain a lower bound for the blow-up time of solutions to the following problem:

\[
\begin{align*}
 u_t &= \sum_{i,j=1}^{n} (a^{ij}(x)u_{x_i})_{x_j} - f(u), \quad x \in \Omega, \ t > 0, \\
 \sum_{i,j=1}^{n} a^{ij}(x)u_{x_i}v_j &= g(u), \quad x \in \partial \Omega, \ t > 0, \\
 u(x, 0) &= u_0(x) \geq 0, \quad x \in \Omega,
\end{align*}
\]

where \(\Omega \subseteq \mathbb{R}^n, n \geq 3 \), is a convex bounded domain with smooth boundary, \(v \) is the outward normal vector to \(\partial \Omega \), \(u_0(x) \) is the initial value and \((a^{ij}(x))_{n \times n} \) is a differentiable positive definite matrix. Moreover, we assume that the functions \(f \) and \(g \) are nonnegative and satisfy:

E-mail addresses: khbaghaei@iust.ac.ir (K. Baghaei), hesaraki@sina.sharif.edu (M. Hesaaraki).
\[f(\tau) \geq \gamma_1 \tau^p, \quad g(\tau) \leq \gamma_2 \tau^q, \quad \tau \geq 0, \]

where \(p > 1, q > 1 \) and \(\gamma_1 \) and \(\gamma_2 \) are some positive constants.

Many papers in the literature are devoted to the bounds for the blow-up time in nonlinear parabolic problems, we refer the interested reader to [1,4,6–9] and the references therein.

In [5], the authors investigated the existence of global and blow-up solutions to problem (1). It was shown that if \(p > q > 1 \) and \(2q < p + 1 \), the nonnegative solutions to problem (1) does not blow-up in finite time. Moreover, they showed that under some reasonable conditions on \(f \) and \(g \) blow-up occurs. In addition, a lower bound for the blow-up time of solutions was obtained when \(\Omega \subseteq \mathbb{R}^n \) is a bounded star shaped domain.

In this paper, we consider the case \(2q \geq p + 1 \), and obtain a lower bound for the blow-up time in a smooth bounded convex domain \(\Omega \subseteq \mathbb{R}^n, n \geq 3 \).

In the next section, we will find a lower bound for the blow-up time, when the blow-up occurs.

2. A lower bound for the blow-up time

In this section we seek a lower bound for the blow-up time \(T \) in some appropriate measure. The idea of the proof of the following theorem came from [1].

Theorem 2.1. Let \(u(x, t) \) be the nonnegative classical solution to problem (1) in a smooth bounded convex domain \(\Omega \subseteq \mathbb{R}^n, n \geq 3 \). Moreover, we assume that the nonnegative functions \(f \) and \(g \) satisfy

\[f(\tau) \geq \gamma_1 \tau^p, \quad g(\tau) \leq \gamma_2 \tau^q, \quad \tau \geq 0, \tag{2} \]

where \(p > 1, q > 1 \) and \(2q \geq p + 1 \) and \(\gamma_1 \) and \(\gamma_2 \) are some positive constants. Define

\[\Phi(t) = \int_\Omega u^{2k} \, dx, \tag{3} \]

where \(k > \max\{2(n - 2)(q - 1), \frac{q}{2} - 1, 1\} \) is a parameter. If \(u(x, t) \) blows up at finite time \(T \), then \(T \) is bounded from below by

\[\int_0^\infty \frac{d\xi}{k_2 + k_1 \xi + k_6 \xi^{\frac{3n-2k}{n}}} \leq \frac{\theta \eta_0^2}{k}, \tag{4} \]

where \(k_1, k_2 \) and \(k_6 \) are positive constants that will be determined later.

Proof. Since \((a^{ij}(x))_{n \times n} \) is a positive definite matrix, then there exists \(\theta > 0 \) such that for all \(\eta \in \mathbb{R}^n \),

\[\sum_{i, j = 1}^n a^{ij}(x) \eta_i \eta_j \geq \theta |\eta|^2. \tag{5} \]

Now, we compute:

\[
\frac{d\Phi}{dt} = 2k \int_\Omega u^{2k-1} u_t \, dx \\
= 2k \int_\Omega u^{2k-1} \left(\sum_{i, j = 1}^n (a^{ij}(x)u_{x_i})_j - f(u) \right) \, dx \\
= -2k(2k - 1) \int_\Omega u^{2k-2} \left(\sum_{i, j = 1}^n a^{ij}(x)u_{x_i}u_{x_j} \right) \, dx + 2k \int_\partial\Omega u^{2k-1} g(u) \, ds - 2k \int_\Omega u^{2k-1} f(u) \, dx \\
\leq -2k(2k - 1) \theta \int_\Omega u^{2k-2} |\nabla u|^2 \, dx + 2k \int_\partial\Omega u^{2k-1} g(u) \, ds - 2k \int_\Omega u^{2k-1} f(u) \, dx \\
\leq -\frac{2(2k - 1)\theta}{k} \int_\Omega |\nabla u|^{2k} \, dx + 2k \gamma_2 \int_\partial\Omega u^{2k+q-1} \, ds - 2k \gamma_1 \int_\Omega u^{2k+p-1} \, dx, \tag{6} \]

where we have used (5) and (2) in the last inequalities. By integrating the following identity over \(\Omega \),

\[\nabla \cdot (xu^{2k+q-1}) = nu^{2k+q-1} + (2k + q - 1)u^{2k+q-2} (x, \nabla u), \]
we obtain:

\[
\int_{\partial \Omega} u^{2k+q-1} \, ds \leq \frac{n}{\rho_0} \int_{\Omega} u^{2k+q-1} \, dx + \frac{(2k + q - 1)d}{\rho_0} \int_{\Omega} u^{2k+q-2} |\nabla u| \, dx,
\]
(7)

where

\[\rho_0 = \min_{\partial \Omega} (x, \nu) > 0, \quad d = \max |x| \text{.} \]

Note that \(\rho_0 \) is positive since \(\Omega \) is assumed to be convex. Next, applying the Young inequality for (7) twice yields:

\[
\int_{\partial \Omega} u^{2k+q-1} \, ds \leq \frac{1}{2} \int_{\Omega} u^{2k} \, dx + \frac{1}{2} \left(\left(\frac{n}{\rho_0} \right)^2 + \frac{(2k + q - 1)^2 d^2}{\rho_0^2 \epsilon_1} \right) \int_{\Omega} u^{2k+2q-2} \, dx + \frac{\epsilon_1}{2k^2} \int_{\Omega} |\nabla u^k|^2 \, dx,
\]
(8)

where \(\epsilon_1 \) is a positive constant to be determined later. Substituting (8) into (6), we get:

\[
\frac{d\Phi}{dt} \leq \left(-\frac{2(2k - 1)\theta}{k} + \gamma_2 \epsilon_1 \right) \int_{\Omega} |\nabla u^k|^2 \, dx + k\gamma_2 \int_{\Omega} u^{2k} \, dx
\]

\[+ k\gamma_2 \left(\left(\frac{n}{\rho_0} \right)^2 + \frac{(2k + q - 1)^2 d^2}{\rho_0^2 \epsilon_1} \right) \int_{\Omega} u^{2k+2q-2} \, dx - 2k\gamma_1 \int_{\Omega} u^{2k+p-1} \, dx. \]
(9)

Now, by using the H"older and Young inequalities, respectively, we get:

\[
\int_{\Omega} u^{2k+2q-2} \, dx \leq |\Omega|^{\frac{1}{2}} \left(\int_{\Omega} u^{\frac{k(2n-3)}{2n-2}} \, dx \right)^{\frac{2}{m_2}} \leq m_1 |\Omega| + m_2 \int_{\Omega} u^{\frac{k(2n-3)}{2n-2}} \, dx,
\]
(10)

where

\[m_1 = 1 - \frac{(n-2)(2k + 2q - 2)}{k(2n-3)}, \quad m_2 = \frac{(n-2)(2k + 2q - 2)}{k(2n-3)}. \]

Combining (10) with (9) gives:

\[
\frac{d\Phi}{dt} \leq \left(-\frac{2(2k - 1)\theta}{k} + \gamma_2 \epsilon_1 \right) \int_{\Omega} |\nabla u^k|^2 \, dx + k\gamma_2 \int_{\Omega} u^{2k} \, dx
\]

\[+ k\gamma_2 \left(\left(\frac{n}{\rho_0} \right)^2 + \frac{(2k + q - 1)^2 d^2}{\rho_0^2 \epsilon_1} \right) m_2 \int_{\Omega} u^{\frac{k(2n-3)}{2n-2}} \, dx
\]

\[+ k\gamma_2 \left(\left(\frac{n}{\rho_0} \right)^2 + \frac{(2k + q - 1)^2 d^2}{\rho_0^2 \epsilon_1} \right) m_1 |\Omega| - 2k\gamma_1 \int_{\Omega} u^{2k+p-1} \, dx. \]
(11)

We now make use of Schwarz’s inequality to the third term on the right-hand side of (11) as follows:

\[
\int_{\Omega} u^{\frac{k(2n-3)}{2n-2}} \, dx \leq \left(\int_{\Omega} u^{2k} \, dx \right)^{\frac{1}{2}} \left(\int_{\Omega} u^{\frac{2k(2n-11)}{2n-2}} \, dx \right)^{\frac{1}{2}} \leq \left(\int_{\Omega} u^{2k} \, dx \right)^{\frac{1}{4}} \left(\int_{\Omega} (u^k)^{\frac{2n}{n-2}} \, dx \right)^{\frac{1}{4}}.
\]
(12)

By using the Sobolev inequality in [2, Corollary IX.14, p. 168] or in [3, Corollary 9.14, p. 284], for \(n \geq 3 \), we get:

\[
\|u^k\|_{L^{\frac{2n}{n-2}}(\Omega)} \leq c_s \|u^k\|_{W^{1,2}(\Omega)}^{\frac{n}{n-2}} \leq c \left(\|\nabla u^k\|_{L^2(\Omega)}^{\frac{n}{n-2}} + \|u^k\|_{L^2(\Omega)}^{\frac{n}{n-2}} \right),
\]
(13)

where \(c_s \) is a constant depending on \(\Omega \) and \(n \) and:

\[
c = \begin{cases}
2^{\frac{1}{2}}(c_s)^2, & \text{for } n = 3, \\
(c_s)^{\frac{n}{n-2}}, & \text{for } n > 3.
\end{cases}
\]

By inserting (13) in (12), we obtain:
\[\int_{\Omega} u \frac{k(2n-3)}{(n-2)} \, dx \leq c \left(\int_{\Omega} u^{2k} \, dx \right)^{\frac{3}{4}} \left(\left\| \nabla u^{k} \right\|_{L^{2}(\Omega)}^{n} + \left\| u^{k} \right\|_{L^{2}(\Omega)}^{n} \right) \]

\[= c \left(\int_{\Omega} u^{2k} \, dx \right)^{\frac{3}{4}} \left(\int_{\Omega} \left| \nabla u^{k} \right|^{2} \, dx \right)^{\frac{n}{4(n-2)}} + c \left(\int_{\Omega} u^{2k} \, dx \right)^{\frac{2n-3}{2n(n-2)}} . \]

(14)

Now, we can use the Young inequality to get:

\[\int_{\Omega} u \frac{k(2n-3)}{(n-2)} \, dx \leq \frac{c^{\frac{4n-21}{5n-8}}(3n-8)}{4(n-2)\epsilon_{2}^{\frac{4n-21}{5n-8}}} \left(\int_{\Omega} u^{2k} \, dx \right)^{\frac{3(n-2)}{5n-8}} + \frac{n\epsilon_{2}}{4(n-2)} \int_{\Omega} \left| \nabla u^{k} \right|^{2} \, dx + c \left(\int_{\Omega} u^{2k} \, dx \right)^{\frac{2n-3}{2n(n-2)}} , \]

(15)

where \(\epsilon_{2} \) is a positive constant to be determined later. By using the Hölder inequality, we can have:

\[\int_{\Omega} u^{2k+p-1} \, dx \geq |\Omega|^{-\frac{p-1}{n}} \left(\int_{\Omega} u^{2k} \, dx \right)^{1+\frac{p-1}{n-p}} . \]

(16)

Next, we can apply the Young inequality to the third term on the right-hand side of (15) to conclude:

\[\left(\int_{\Omega} u^{2k} \, dx \right)^{\frac{2n-3}{2n(n-2)}} \leq \left(\epsilon_{3} \right)^{-m_{3}} \frac{m_{4}}{m_{3}} \left(\int_{\Omega} u^{2k} \, dx \right)^{\frac{3(n-2)}{5n-8}} + \epsilon_{3} \left(\int_{\Omega} u^{2k} \, dx \right)^{\frac{3}{4(n-2)}} , \]

(17)

where

\[m_{3} = \frac{2(n-2)(6k(n-2) - (2k + p - 1)(3n-8))}{(3n-8)(2k(2n-3) - 2(n-2)(2k + p - 1))}, \]

\[m_{4} = \frac{2(n-2)(6k(n-2) - (3n-8)(2k + p - 1))}{2k(6(n-2)^{2} - (2n-3)(3n-8))}, \]

and \(\epsilon_{3} \) is a positive constant to be determined later. Combining (15), (16) and (17) with (11), we get:

\[\frac{d\Phi}{dt} \leq k_{1} \Phi - 2k\gamma_{1} |\Omega|^{-\frac{p-1}{n}} \Phi^{1+\frac{p-1}{n}} + k_{2} + k_{3} \Phi^{\frac{3(n-2)}{5n-8}} + k_{4} \Phi^{\frac{2n-3}{2n(n-2)}} + k_{5} \int_{\Omega} \left| \nabla u^{k} \right|^{2} \, dx \]

\[\leq k_{1} \Phi + \left(-2k\gamma_{1} |\Omega|^{-\frac{p-1}{n}} + \frac{k_{4}\epsilon_{3}}{m_{4}} \right) \Phi^{1+\frac{p-1}{n}} + k_{2} + \left(k_{3} + \frac{k_{4}}{m_{3}} \epsilon_{3} \right) \Phi^{\frac{3(n-2)}{5n-8}} + k_{5} \int_{\Omega} \left| \nabla u^{k} \right|^{2} \, dx , \]

where

\[k_{1} = k\gamma_{2} , \]

\[k_{2} = k\gamma_{2} \left[\left(\frac{n}{\rho_{0}} \right)^{2} + \frac{(2k + q - 1)^{2} d^{2}}{\rho_{0}^{2}} \right] m_{1} |\Omega| , \]

\[k_{3} = k\gamma_{2} m_{2} \left[\left(\frac{n}{\rho_{0}} \right)^{2} + \frac{(2k + q - 1)^{2} d^{2}}{\rho_{0}^{2}} \right] (3n-8) c^{\frac{4n-21}{5n-8}} \] \[\frac{4(n-2)}{\epsilon_{2}^{\frac{4n-21}{5n-8}}} , \]

\[k_{4} = k\gamma_{2} \left[\left(\frac{n}{\rho_{0}} \right)^{2} + \frac{(2k + q - 1)^{2} d^{2}}{\rho_{0}^{2}} \right] m_{2} c , \]

\[k_{5} = \left[k\gamma_{2} \left[\left(\frac{n}{\rho_{0}} \right)^{2} + \frac{(2k + q - 1)^{2} d^{2}}{\rho_{0}^{2}} \right] m_{2} \right] \frac{n\epsilon_{2}}{4(n-2)} + \frac{2\gamma_{1}}{k} k_{4} \epsilon_{2} - \frac{2(2k-1)\theta}{k} . \]

By choosing \(\epsilon_{1} > 0 \) small enough, we can choose \(\epsilon_{2} > 0 \) such that \(k_{5} = 0 \). We also choose \(\epsilon_{3} > 0 \) such that:

\[\epsilon_{3} = \frac{2k\gamma_{1} m_{4}}{k_{4}} |\Omega|^{-\frac{p-1}{n}} . \]

Hence, we can write:

\[\frac{d\Phi}{dt} \leq k_{2} + k_{1} \Phi + k_{6} \Phi^{\frac{3(n-2)}{5n-8}} , \]

(18)
where

\[k_6 = k_3 + \frac{k_4}{m_3} (e_4)^{-\frac{m_3}{m_4}}. \]

Then

\[\frac{d\Phi}{k_2 + k_1\Phi + k_6\Phi^{\frac{2n-2}{3n-8}}} \leq 1. \] \hspace{1cm} (19)

Integrating of (19) from 0 to \(t \), we obtain:

\[\Phi(t) \left(\int_{\Phi(0)}^{t} \frac{d\xi}{k_2 + k_1\xi + k_6\xi^{\frac{2n-2}{3n-8}}} \right) \leq t. \]

Passing to the limit as \(t \to T^- \), we get:

\[\int_{\Phi(0)}^{+\infty} \frac{d\xi}{k_2 + k_1\xi + k_6\xi^{\frac{2n-2}{3n-8}}} \leq T. \]

Thus, the proof is complete. \(\square \)

References