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We prove that a C0-small area preserving the homeomorphism of a closed surface with
vanishing mass flow cannot displace a topological disk of large area. This resolves the
displaced disks problem posed by F. Béguin, S. Crovisier, and F. Le Roux.
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r é s u m é

Nous démontrons qu’une petite surface C0 préservant l’homéomorphisme d’une surface
fermée avec un flux de masse disparaissant ne peut pas déplacer un disque topologique de
grande surface. Ceci résout le problème des disques déplacés posé par F. Béguin, S. Crovisier
et F. Le Roux.

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let Σ be a closed surface endowed with an area form Ω . We denote by HomeoΩ(Σ) the group of area preserving
the homeomorphisms of Σ , by HomeoΩ

0 (Σ) the path component of identity in HomeoΩ(Σ), and by Ham(Σ) the group of
Hamiltonian diffeomorphisms of Σ . We will be studying, G , the C0 closure of Ham(Σ) inside HomeoΩ

0 (Σ).
The group G is a well-studied dynamical object: it is precisely the set of elements of HomeoΩ

0 (Σ) with vanishing mass
flow. For a definition of the mass flow homomorphism, which is also known as the mean rotation vector, see Section 5
of [3]. Equivalently, G can be described as the set of elements of HomeoΩ

0 (Σ) with zero flux; see Appendix A.5 of [3]. In
this note, we only work with the description of G as the C0 closure of Ham(Σ). It is well known that in the case of S2,
G = HomeoΩ

0 (S2).
Recall that a homeomorphism φ is said to displace a set B if φ(B) ∩ B = ∅. For a > 0, define Ga = {θ ∈ G: θ displaces

a topological disk of area at least a}. The displaced disks problem, posed by F. Béguin, S. Crovisier, and F. Le Roux, asks the
following.

Question. (See Béguin, Crovisier, Le Roux [1].) Does the C0 closure of Ga contain the identity?

The initial motivation of Béguin, Crovisier, and Le Roux for posing this beautiful question is as follows: G is a normal
subgroup of HomeoΩ(Σ). Béguin, Crovisier, and Le Roux were interested in knowing whether the conjugacy class of an
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element of G could be C0-dense in all of G . As we will see below, a negative answer to the displaced disks problem
provides a negative answer to this question as well.

Equip Σ with a Riemannian distance d and define the C0 distance between two homeomorphisms φ, ψ by dC0(φ,ψ) :=
max{maxx∈Σ d(φ(x),ψ(x)),maxx∈Σ d(φ−1(x),ψ−1(x))}. Our main result provides a negative answer to the displaced disks
problem.

Theorem 1. There exists ε > 0 such that dC0 (Id, θ) � ε for all θ ∈ Ga.

Let C(φ) = {ψφψ−1: ψ ∈ HomeoΩ(Σ)} denote the conjugacy class of φ ∈ G . Observe that Ga is invariant under a conju-
gation by area preserving homeomorphisms and hence, if φ �= Id, then C(φ) ⊂ Ga , for some a > 0. Theorem 1 immediately
yields the next result.

Corollary 2. C(φ) is not C0-dense in G .

Remark. Working independently of the author, Andrew D. Hanlon and Daniel N. Dore [6] have obtained results similar to
what appears in this article.

The following facts were pointed out to me by Béguin, Crovisier, and Le Roux.
1. Theorem 1 would not hold without requiring θ ∈ G . Indeed, it is not difficult to see that a C0-small translation of the
torus displaces a disk with an area nearly equal to half the total area of the torus.
2. Corollary 2 does not hold for arbitrary elements of Homeo0(Σ). See Remark 7.11 of [5] for an example of a homeo-
morphism of S2 whose conjugacy class is C0-dense in Homeo0(S2). Once it is established that the conjugacy class of a
homeomorphism is dense, then it is easy to see that the conjugacy class of that homeomorphism is a Gδ set. Hence, we
conclude that the conjugacy class of a generic homeomorphism of S2 is dense.
3. Suppose that Σ �= S2. It follows from the work of Gaumbado and Ghys [4] and Entov, Polterovich, and Py [2] that G carries
C0-continuous and homogeneous quasimorphisms; see Theorem 1.2 of [2]. Corollary 2 follows immediately as homogeneous
quasimorphisms are constant on conjugacy classes.

2. Proof of Theorem 1

Our proof uses Floer theoretic invariants of Hamiltonian diffeomorphisms. In particular, we use the theory of spectral
invariants, or action selectors, introduced by C. Viterbo, M. Schwarz, and Y.-G. Oh [10,8,7]. An important consequence of this
theory is that the group of Hamiltonian diffeomorphisms of a closed symplectic manifold M admits a conjugation invariant
norm γ : Ham(M) → [0,∞).1 Being a conjugation invariant norm, γ satisfies the following axioms:

(i) γ (φ) � 0 with equality if and only if φ = Id,
(ii) γ (φ) = γ (φ−1),

(iii) γ (φψ) � γ (φ) + γ (ψ),
(iv) γ (ψφψ−1) = γ (φ).

An important feature of γ is the fact that it satisfies the so-called energy-capacity inequality. In the case of a closed
surface Σ the energy-capacity inequality states that if φ ∈ Ham(Σ) displaces a disk of area a, then:

a � γ (φ). (1)

Theorem 2 of [9] provides the final step of our solution. According to this theorem, for a closed surface Σ , of genus g , there
exist constants C, δ > 0 such that ∀φ ∈ Ham(Σ) if dC0 (Id, φ)� δ, then

γ (φ)� C dC0(Id, φ)2−2g−1
. (2)

We now prove Theorem 1. For a contradiction, suppose it does not hold and pick a sequence θi ∈ Ga that converges
uniformly to the identity and conclude from Inequality (2) that γ (θi) → 0. But this is impossible because the energy-capacity
inequality (1) implies that γ |Ga � a.

2.1. Extending γ to G

We will finish this note by showing that the conjugation invariant norm γ extends continuously to G . We need
a small modification of Inequality (2). Let C , δ denote the constants appearing in this inequality and suppose that
dC0(ψ,φ) � δ, where ψ,φ ∈ Ham(Σ). Applying Inequality (2) to ψφ−1, we obtain that γ (ψφ−1) � C dC0 (Id,ψφ−1)2−2g−1 �

1 γ is usually defined on the universal cover of Ham. For φ ∈ Ham, one can define γ (φ) by taking infimum over all paths which end at φ.
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C dC0(φ,ψ)2−2g−1
; the latter inequality follows from the definition of dC0 . Now, using Axiom (iii) of γ , we see that

γ (ψ) − γ (φ) � γ (ψφ−1). Hence, γ (ψ) − γ (φ) � C dC0 (ψ,φ)2−2g−1
. Similarly, we obtain the same upper bound for

γ (φ) − γ (ψ). Therefore, we have proven that ∀ψ , φ ∈ Ham(Σ) if dC0(ψ,φ) � δ, then
∣
∣γ (ψ) − γ (φ)

∣
∣� C dC0(ψ,φ)2−2g−1

.

We see that γ is uniformly continuous with respect to dC0 and so, it extends continuously to G . Clearly, the extension
γ : G → R satisfies Inequalities (1) and (2), in addition to the four stated axioms of conjugation invariant norms.
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