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We use a discrete approximation of the motion by crystalline curvature to define an
evolution of sets from a single point (nucleation) following a criterion of “maximization” of
the perimeter, formally giving a backward version of the motion by crystalline curvature.
This evolution depends on the approximation chosen.

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Nous utilisons une approximation discrète du mouvement par la courbure cristalline pour
définir une évolution des ensemples à partir d’un seul point (nucléation) selon un critère
de « maximisation » du périmètre, ce qui donne fomallement une version du mouvement
en arrière par courbure cristalline. Cette évolution dépend de l’approximation choisie.

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Geometric variational evolutions, in particular curvature-based motions, may be studied using an implicit-time scheme
proposed by Almgren, Taylor, and Wang. Following the formal consideration that curvature can be seen as the variation of
the perimeter, they defined a time-discrete trajectory Eτ

k , where τ is a time step, Eτ
0 is an initial set and Eτ

k is a minimizer of

min

{
P (E) + 1

τ
D

(
E, Eτ

k−1

)}
, (1)

where P is the Euclidean perimeter, D is a dissipation term accounting for the L2-distance of the boundary of E from
that of Eτ

k−1. We can read (1) as follows: the set Eτ
k “contracts” by minimizing the perimeter subject to a penalization of

its “distance” from Eτ
k−1. A suitable limit of these time-discrete trajectories gives motion by mean curvature [3]. The same

scheme can be repeated taking as P a crystalline perimeter, to obtain motion by crystalline curvature in dimension two [2].
In this paper, we consider the opposite problem of defining a motion when starting from the same discrete schemes for

sets that “expand” by maximizing the perimeter subject to a penalization of their distance from the previous set. Formally,
this involves considering problems of the form:

min

{
−P (E) + 1

τ
D

(
E, Eτ

k−1

)}
, (2)

which can be seen as a “backward” version of the previous ones if the index k is considered as parameterizing negative time
(see [5] Section 10.2). Unfortunately, this problem is ill-posed, giving the trivial infimum −∞ at the first step. Following a
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suggestion by J.W. Cahn, we consider a discrete approximation of P in the crystalline case, and use it to define a backward
crystalline curvature motion with prescribed extinction point (or, equivalently, nucleation of the motion defined for positive
times).

For crystalline curvature flow, the energy to be considered is:

P (A) =
∫
∂ A

‖ν‖1 dHd−1,

with domain the family of sets of finite perimeter in R
d , d � 2, where ∂ A is the reduced boundary of A, ν is the measure-

theoretical normal to ∂ A, ‖ν‖1 = ∑d
i=1 |νi | and Hd−1 is the Hausdorff (d − 1)-dimensional measure [4]. The approximating

energies are:

Pε(A) = Hd−1(∂ A), A ∈ Aε

with domain all unions of coordinate cubes of centres in εZd and side length ε; i.e.,

Aε =
{⋃

i∈I

(εi + εQ ): I ⊂ Z
d
}
, Q = [−1/2,1/2]d.

The functionals Pε can be seen as discrete “ferromagnetic” energies (defined directly on subsets I of Z
d) and Γ -converge

to P (see [1]). Minimizing movements along Pε have been studied by Braides, Gelli and Novaga [6] and they give the
crystalline curvature flow upon taking ε � τ .

We consider initial data Eτ ,ε,λ
0 = Q ε = εQ (which, in the discrete setting, all correspond to the singleton {0}), and define

iteratively Eτ ,ε,λ
k as a minimizer of

min

{
− 1

λ
Pε(E) + 1

τ
Dε

(
E, Eτ ,ε,λ

k−1

)}
, (3)

where

Dε

(
E, E ′) =

∑
i∈Zd∩ 1

ε E

εd+1d∞
(

i,Zd ∩ 1

ε
E ′

)
+

∑
i∈Zd∩ 1

ε (E ′\E)

εd+1d∞
(

i,Zd \ 1

ε
E ′

)
, (4)

d∞(i, I) = min
{∥∥i − i′

∥∥∞: i′ ∈ I
}
. (5)

Note the new parameter λ, which does not change the nature of the problems and whose introduction can be interpreted
as a time-scaling of the trajectories with λ = 1 (see [5] Chapter 10).

Choice of scalings. We first determine a correct scaling for λ and τ in terms of ε in order to have a non-trivial limit. To this
end, we note that the minimal variation of the energy in (3) from the set Eτ ,ε,λ

k−1 corresponds to the addition of an ε-cube

with no side in common with Eτ ,ε,λ
k−1 . The variation is:

−2d

λ
εd−1 + 1

τ
Kεd+1 (6)

with 0 	= K ∈ N. This quantity may be negative if and only if:

1 � 2dτ

λε2
. (7)

The relative scaling of ε, τ and λ must be such that this condition be satisfied. We treat the case:

τ/ε = γ ∈ (0,+∞), λε = α ∈ (0,+∞), (8)

so that (7) corresponds to:

1

2d
� γ

α
. (9)

The convergence result. We can now describe the behaviour of the minimizing-movement scheme in (3).

Theorem (Nucleation). Let τ , ε and λ satisfy the condition (8); correspondingly, let Eτ (t) = Eτ ,ε,λ

t/τ� , with Eτ ,ε,λ

k given by (3) with

initial data Eτ ,ε,λ
0 = εQ , and let:

2dγ
/∈N (10)
α
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be satisfied. Then, for all fixed t, the Kuratowsky limit of the family Eτ (t) as τ → 0 is a cube of centre 0 and side length 2
 2dγ
α �t. In

particular:

(a) (pinning threshold) if (9) is not satisfied, then the motion is trivial: E(t) = {0};
(b) (linear expansion) if (9) and (10) are satisfied, then the motion is given by a family of expanding cubes whose sides move with

constant velocity 
 2dγ
α �.

Remark. (i) If 2dγ
α ∈ N, then we obtain that the sets E are contained in the cubes moving with velocity 2dγ

α , and contain the

cubes moving with velocity 2dγ
α − 1, but need not be cubes themselves. This is due to the non-uniqueness of the minimal

sets in (3);
(ii) contrary to the forward case, in which crystalline motion has been described only in dimension two (see [8]), due to

its simpler form the limit can be described in all dimensions d;
(iii) the problem can be set for different distances dϕ (depending on a norm ϕ) in the place of the ∞-distance in (5). In

that case, the sets E(t) are not cubes, but are homothetic to the convex envelope E of the set of points i ∈ Z
d such that:

dϕ(i,0) � 2d
γ

α
(11)

(as above, this description does not hold if we have equality in (11) for some i), and expand with constant velocity. Note
that, even for the Euclidean distance, such sets are non-trivial polyhedra;

(iv) note that for general distances, the set E may be of dimension lower than d. For example, in dimension two, and ϕ
a sufficiently asymmetric norm, E(t) may be a linearly growing segment.

We give a brief proof of the theorem as stated in this easier case, and after that comment the more technical points for
the changes in the proof in the general case.

Proof of the theorem. First note that if (9) is not satisfied, then every competing set E in the definition of Eτ ,ε,λ
1 gives a

strictly larger value than the set Eτ ,ε,λ
0 ; hence, each discrete trajectory is trivial, and so is their limit.

Suppose now that (9) is satisfied. We then prove that Eτ ,ε,λ
k is a (even) checkerboard structure containing εQ ; i.e., it is

the union of cubes ε(i + Q ) with i ∈ Z
d and ‖i‖1 = |i1| + · · · + |id| even (for short, we say that i is even). Moreover,

{
i ∈ Z

d: εi ∈ Eτ ,ε,λ
k

} =
{

i ∈ Z
d even, ‖i‖∞ �

⌊
2dγ

α

⌋
k

}
. (12)

The statement above can be proved inductively by showing that:

{
i ∈ Z

d: εi ∈ Eτ ,ε,λ
k

} =
{

i ∈ Z
d even, d∞

(
i,

1

ε
Eτ ,ε,λ

k−1

)
�

⌊
2dγ

α

⌋}
. (13)

To this end, it suffices to note that the contribution of the energy of a competitor E corresponding to points i with
d∞(i, Eτ ,ε,λ

k−1 ) = j for 1 � j � 2dγ /α is minimal when no two such points have a nearest-neighbour in E , while if j > 2dγ /α

it is minimal if E contains no such point. This shows that Eτ ,ε,λ
k \ Eτ ,ε,λ

k−1 corresponds to a checkerboard structure. Since the

contribution of even and odd checkerboard structure outside Eτ ,ε,λ
k−1 is equal, and the even checkerboard structure allows to

leave Eτ ,ε,λ
k−1 unchanged, we get the thesis. �

Remark. The proof above relies heavily on the structure of the l∞ distance, for which all sublevel sets in the proof are
cubes. For a general norm ϕ this is not true; as a consequence, in particular we might not have that the minimal sets Eτ ,ε,λ

k
correspond to the same checkerboard structure (even or odd), and they might ‘oscillate’ between even or odd checkerboards.
This may happen only for a finite number of indices k; eventually, they stabilize and after some k0 they have the same parity
(which may be the odd checkerboard, not containing then the point 0). At this point, we may apply an induction argument
as above. Note, however, that in this case the evolving sets are homothetic only in the limit, while the discrete sets are not
homothetic at ε, τ , λ fixed.

The proofs and examples in the general case will appear in [7].
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