

Contents lists available at ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

Differential geometry

Special projective Lichnérowicz–Obata theorem for Randers spaces

CrossMark

Le théorème projectif resteint de Lichnérowicz–Obata sur les espaces de Randers

Mehdi Rafie-Rad^{a,b}

^a School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5746, Tehran, Iran

^b Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, P.O. Box 47416-1467, Babolsar, Iran

ARTICLE INFO

Article history: Received 24 July 2013 Accepted after revision 16 October 2013 Available online 13 November 2013

Presented by the Editorial Board

ABSTRACT

It is proved that either every special projective vector field V on a Randers space $(M, F = \alpha + \beta)$ is a conformal vector field of the Riemannian metric $\alpha^2 - \beta^2$, or F is of isotropic S-curvature. This result is applied to establish a projective Lichnérowicz–Obata-type result on the closed manifolds with generic Randers metrics.

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

RÉSUMÉ

On prouve que, soit chaque champ projectif de vecteurs sur un espace de Randers ($M, F = \alpha + \beta$) est conforme à la métrique riemanienne $\alpha^2 - \beta^2$, soit F est à S-courbure isotrope. Ce résultat est appliqué à l'établissement d'un théorème de type de Lichnérowicz–Obata sur les variétés fermées de Randers.

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The projective Lichnérowicz–Obata theorem in Riemannian geometry has been recently extended to closed Randers spaces in [4], cf. Corollary 1.5. However, this result seems to be incomplete since, unlike its Riemannian prototype, it does not imply the positivity of the flag curvature of the metric. A suggestion for arriving to the case of positive flag curvature is to consider only a sub-class of projective geometry in order to establish a reduced Lichnérowicz–Obata-type theorem. As it will be presented, the *special projective geometry*—which has been recently discussed in [5–7] for Randers metrics—is a good candidate for such a purpose, since this is an immediate extension of the Riemannian projective geometry.

The results would imply that the special projective Randers geometry may refer to study one of the following cases: (a) conformal transformations of an appropriate Riemannian space, (b) isometries of a Randers space, or (c) Randers spaces of isotropic S-curvature. We prove the result for the pure Randers metrics:

Theorem 1.1. Let us suppose that $(M, F = \alpha + \beta)$ is a Randers space of dimension $n \ge 2$. Then, at least one of the following statements holds:

E-mail address: rafie-rad@umz.ac.ir.

¹⁶³¹⁻⁰⁷³X/\$ – see front matter C 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. http://dx.doi.org/10.1016/j.crma.2013.10.012

- (i) every special projective vector field on (M, F) is a conformal vector field of the Riemannian metric $\alpha^2 \beta^2$,
- (ii) F is of isotropic S-curvature.

Theorem 1.1 implies the following result:

Theorem 1.2. Let us suppose that $(M, F = \alpha + \beta)$ is a closed and connected Randers space of dimension $n \ge 2$ and V is a special projective vector field of F. Then, at least one of the following statements holds:

- (i) V is a conformal vector field for the Riemannian metric $\alpha^2 \beta^2$,
- (ii) there is a Randers metric \hat{F} such that V is a Killing vector field for \hat{F} ,
- (iii) after an appropriate rescaling, *F* is of the following local form:

$$F(x, y) = \frac{\sqrt{|y|^2 + |x|^2 |y|^2 - \langle x, y \rangle^2}}{1 + |x|^2} - \frac{f_{x^k} y^k}{\sqrt{1 - f^2(x)}}, \quad y \in T_x M \cong \mathbb{R}^n,$$
(1)

where *f* is an eigenfunction of the standard Laplacian satisfying $\Delta f = nf$ and $\max_{x \in M} |f| < 1$. In particular, *F* is of positive flag curvature.

All manifolds are assumed to be smooth and connected, the natural coordinates on the tangent manifold *TM* are denoted by (x^i, y^i) and the derivations with respect to x^k and y^k are denoted by the subscripts $_{x^k}$ and $_{y^k}$, respectively. Moreover, we deal with pure and positive definite Randers metrics.

2. Special projective Finsler geometry

Two Finsler metrics F and \tilde{F} on M are said to be *projectively equivalent* if they have the same forward geodesics. A Finsler metric F is said to be *locally projectively flat* if, at any point $x \in M$, there is a neighborhood U such that F and the Euclidean metric are projectively equivalent on U. Given a Finsler space (M, F), a diffeomorphism $\phi : M \longrightarrow M$ is called a *projective transformation* if F and ϕ^*F are projectively equivalent.

Suppose that $\alpha = \sqrt{a_{ij}y^i y^j}$ is a Riemannian metric and $\beta = b_i(x)y^i$ is a 1-form defined on M such that $\|\beta\|_x := \sup_{y \in T_x M \setminus \{0\}} \beta(y)/\alpha(y) < 1$. Then the function $F = \alpha + \beta$ is a Finsler metric on M, which is called a *Randers metric*. The geodesic spray coefficients of α and F are denoted respectively by the G_{α}^i and G^i , and the Levi-Civita connection of α is denoted by ∇ . The covariant derivation of β is given by $(\nabla_j b_i) dx^j := db_i - b_j \theta_i^j$, where $\theta_i^j := \tilde{\Gamma}_{ik}^j dx^k$ denote the associated connection forms. Let us stipulate the following conventions: $r_{ij} := \frac{1}{2}(\nabla_j b_i + \nabla_i b_j)$, $s_{ij} := \frac{1}{2}(\nabla_j b_i - \nabla_i b_j)$, $s^i_j := a^{ih}s_{hj}$, $s_j := b_i s^i_j$ and $e_{ij} := r_{ij} + b_i s_j + b_j s_i$, $e_{00} := e_{ij} y^i y^j$, $s_0 := s_i y^i$ and $s^i_0 := s^i_j y^j$. Then the geodesic spray coefficients G^i of F are of the following form:

$$G^{i} = G^{i}_{\alpha} + \left(\frac{e_{00}}{2F} - s_{0}\right)y^{i} + \alpha s^{i}_{0}.$$
(2)

It is well known that a Randers metric $F = \alpha + \beta$ on M is locally projectively flat if and only if α is of constant sectional curvature and if β is closed. The locally projectively flat Randers metrics with isotropic S-curvature has been characterized by Chen, Mo and Shen in [2], cf. Theorem 1.3 and Theorem 1.4.

A projective transformation $\phi: M \longrightarrow M$ is said to be *special* if it preserves the E-curvature; in this case, ϕ changes the geodesic spray coefficients as $\tilde{G}^i(x, y) = G^i(x, y) + P(x, y)y^i$, where $P = P_i(x)y^i$. The complete lift of any vector field V on M is given by $\hat{V} = V^i \frac{\partial}{\partial x^i} + y^k \frac{\partial V^i}{\partial x^k} \frac{\partial}{\partial y^i}$. The Lie derivative operator with respect to the vector field V is denoted by $\mathcal{L}_{\hat{V}}$. It is well known that, $\mathcal{L}_{\hat{V}}y^i = 0$, $\mathcal{L}_{\hat{V}} dx^i = 0$ and the differential operators $\mathcal{L}_{\hat{V}}$, $\frac{\partial}{\partial x^i}$, the exterior differential operator d and $\frac{\partial}{\partial y^i}$ commute within any natural coordinates system on tangent manifold. The vector field V is called a *projective vector field*, if there is a function P on TM_0 , called the *projective factor*, such that $\mathcal{L}_{\hat{V}}G^i = Py^i$, see [1]. In this case, given any appropriate t, the local flow $\{\phi_t\}$ associated with V is a projective transformation. A projective vector field V is said to be *special* if the projective factor P(x, y) is lift of a 1-form on M, i.e. $P(x, y) = P_i(x)y^i$. Notice that, on the Riemannian spaces, given any projective vector field V, the projective factor P(x, y) is linear with respect to y, while this property is a non-Riemannian feature in a Finslerian background. The projective vector fields have several characterizations in the contexts, see Ref. [1] for some such results. The following characterization is useful in the sequel:

Theorem 2.1. (See [5–7].) A vector field V is projective on a Randers space $(M, F = \alpha + \beta)$ if and only if V is projective on (M, α) and $\mathcal{L}_{\hat{V}}(\alpha s^i_0) = 0$.

Given any vector field V, let us stipulate the notation $t_{00} = \mathcal{L}_{\hat{V}} \alpha^2$. Now, we prove the following characterization of special projective vector fields on Randers spaces:

Lemma 2.2. A vector field V on a Randers space $(M, F = \alpha + \beta)$ is special projective if and only if there is a 1-form $P = P_i(x)y^i$ such that the following equations hold:

 $\begin{array}{l} (1) \ 8\alpha^2\beta\mathcal{L}_{\hat{V}}G^i_{\alpha} + (2\alpha^2\mathcal{L}_{\hat{V}}e_{00} - e_{00}t_{00} - 8\alpha^2\beta(\mathcal{L}_{\hat{V}}s_0 - P))y^i = 0, \\ (2) \ 4(\alpha^2 + \beta^2)\mathcal{L}_{\hat{V}}G^i_{\alpha} + (2\beta\mathcal{L}_{\hat{V}}e_{00} - 2e_{00}\mathcal{L}_{\hat{V}}\beta - 4(\alpha^2 + \beta^2)(\mathcal{L}_{\hat{V}}s_0 - P))y^i = 0. \end{array}$

Proof. A vector field *V* on (M, F) is special projective if and only if there is a 1-form $P = P_i(x)y^i$ on *M* such that $\mathcal{L}_{\hat{V}}G^i = Py^i$. By (2) and Theorem 2.1, this is equivalent to:

$$\mathcal{L}_{\hat{V}}\left(G^{i}_{\alpha} + \left(\frac{e_{00}}{2F} - s_{0}\right)y^{i}\right) = Py^{i}.$$
(3)

After expanding the terms, Eq. (3) is equivalent to the identities below:

$$\begin{split} 0 &= \mathcal{L}_{\hat{V}} \left(G_{\alpha}^{i} + \left(\frac{e_{00}}{2F} - s_{0} \right) y^{i} \right) - Py^{i} = \mathcal{L}_{\hat{V}} G_{\alpha}^{i} + \mathcal{L}_{\hat{V}} \frac{e_{00}}{2F} y^{i} - \mathcal{L}_{\hat{V}} s_{0} y^{i} - Py^{i} \\ &= \mathcal{L}_{\hat{V}} G_{\alpha}^{i} + \frac{\mathcal{L}_{\hat{V}} e_{00}}{2F} y^{i} - \frac{e_{00} \mathcal{L}_{\hat{V}} F}{2F^{2}} y^{i} - \mathcal{L}_{\hat{V}} s_{0} y^{i} - Py^{i} \\ &= \mathcal{L}_{\hat{V}} G_{\alpha}^{i} + \frac{\mathcal{L}_{\hat{V}} e_{00}}{2F} y^{i} - e_{00} \frac{\frac{t_{00}}{2\alpha} + \mathcal{L}_{\hat{V}} \beta}{2F^{2}} y^{i} - \mathcal{L}_{\hat{V}} s_{0} y^{i} - Py^{i} \\ &= \mathcal{L}_{\hat{V}} G_{\alpha}^{i} + \frac{\mathcal{L}_{\hat{V}} e_{00}}{2F} y^{i} - e_{00} \frac{\frac{t_{00}}{2\alpha} + \mathcal{L}_{\hat{V}} \beta}{2F^{2}} y^{i} - \mathcal{L}_{\hat{V}} s_{0} y^{i} - Py^{i} \\ &= \mathcal{L}_{\hat{V}} G_{\alpha}^{i} + \frac{\mathcal{L}_{\hat{V}} e_{00}}{2F} y^{i} - e_{00} \frac{t_{00}}{2\alpha} + \mathcal{L}_{\hat{V}} \beta}{2F^{2}} y^{i} - \mathcal{L}_{\hat{V}} s_{0} y^{i} - Py^{i} \\ &= \mathcal{L}_{\hat{V}} G_{\alpha}^{i} + \frac{\mathcal{L}_{\hat{V}} e_{00}}{2F} y^{i} - e_{00} \frac{t_{00}}{2\alpha} + \mathcal{L}_{\hat{V}} \beta}{2F^{2}} y^{i} - \mathcal{L}_{\hat{V}} s_{0} y^{i} - Py^{i} \\ &= \mathcal{L}_{\hat{V}} G_{\alpha}^{i} + \frac{\mathcal{L}_{\hat{V}} e_{00}}{2F} y^{i} - e_{00} \frac{t_{00}}{2\alpha} + \mathcal{L}_{\hat{V}} \beta}{2F^{2}} y^{i} - \mathcal{L}_{\hat{V}} s_{0} y^{i} - Py^{i} \\ &= \mathcal{L}_{\hat{V}} G_{\alpha}^{i} + \frac{\mathcal{L}_{\hat{V}} e_{00}}{2F} y^{i} - e_{00} \frac{t_{00}}{2\alpha} + \mathcal{L}_{\hat{V}} \beta}{2F^{2}} y^{i} - \mathcal{L}_{\hat{V}} s_{0} y^{i} - Py^{i} \\ &= \mathcal{L}_{\hat{V}} G_{\alpha}^{i} + \mathcal{L}_{\hat{V}} g^{i} + \mathcal{$$

where,

$$Rat^{i} = 8\alpha^{2}\beta\mathcal{L}_{\hat{V}}G^{i}_{\alpha} + \left(2\alpha^{2}\mathcal{L}_{\hat{V}}e_{00} - e_{00}t_{00} - 8\alpha^{2}\beta(\mathcal{L}_{\hat{V}}s_{0} - P)\right)y^{i},$$
(4)

$$Irrat^{i} = 4(\alpha^{2} + \beta^{2})\mathcal{L}_{\hat{V}}G_{\alpha}^{i} + (2\beta\mathcal{L}_{\hat{V}}e_{00} - 2e_{00}\mathcal{L}_{\hat{V}}\beta - 4(\alpha^{2} + \beta^{2})(\mathcal{L}_{\hat{V}}s_{0} - P))y^{i}.$$
(5)

Hence, *V* is a special projective vector field if and only if $Rat^i = 0$ and $Irrat^i = 0$, for every i = 1, ..., n. This completes the proof. \Box

3. Proof of main theorems

Proof of Theorem 1.1. Let us suppose that *V* is an arbitrary special projective vector field on $(M, F = \alpha + \beta)$. From Lemma 2.2, there is a 1-form $P = P_i(x)y^i$ on *M* such that $Rat^i = 0$ and $Irrat^i = 0$, for any index *i*; Notice that, Rat^i and $Irrat^i$ are given in (4) and (5). Now, it follows that:

$$\begin{split} 0 &= Rat^{i} - \beta Irrat^{i} \\ &= 4(\alpha^{2} - \beta^{2})\beta\mathcal{L}_{\hat{V}}G_{\alpha}^{i} + 2(\alpha^{2} - \beta^{2})\mathcal{L}_{\hat{V}}e_{00}y^{i} - e_{00}\mathcal{L}_{\hat{V}}(\alpha^{2} - \beta^{2})y^{i} - 4\beta(\alpha^{2} - \beta^{2})(\mathcal{L}_{\hat{V}}s_{0} - P)y^{i} \\ &= (\alpha^{2} - \beta^{2})Q^{i} - e_{00}\mathcal{L}_{\hat{V}}(\alpha^{2} - \beta^{2})y^{i} \quad (i = 1, ..., n), \end{split}$$

where, $Q^i = \{4\beta \mathcal{L}_{\hat{V}} G^i_{\alpha} + 2\mathcal{L}_{\hat{V}} e_{00} y^i - 4\beta (\mathcal{L}_{\hat{V}} s_0 - P) y^i\}$. Given any point $x \in M$, the irreducible polynomial $(\alpha^2 - \beta^2) \in \mathbb{R}[y^1, \ldots, y^n]$ divides the polynomials $e_{00}\mathcal{L}_{\hat{V}}(\alpha^2 - \beta^2)y^i$ $(i = 1, \ldots, n)$. Notice that $(\alpha^2 - \beta^2)$ cannot divide y^i for any index *i*. Given any special projective vector field V, if $(\alpha^2 - \beta^2)$ divides $\mathcal{L}_{\hat{V}}(\alpha^2 - \beta^2)$, then it follows that V is a conformal vector field of the Riemannian metric $(\alpha^2 - \beta^2)$ and this proves (i) in Theorem 1.1. Otherwise, $(\alpha^2 - \beta^2)$ divides e_{00} ; in this case, *F* is of isotropic S-curvature, cf. [3], and this proves (ii). \Box

Proof of Theorem 1.2. Suppose that *V* is a special projective vector field on $(M, F = \alpha + \beta)$ which is not a conformal vector field of the Riemannian metric $\alpha^2 - \beta^2$. By Theorem 1.1, *F* is of isotropic S-curvature. Moreover, by a result in [4], cf. Corollary 1.5, there is a Randers metric \hat{F} such that *V* is either a Killing vector field of \hat{F} or *F* is locally projectively flat and α has positive constant sectional curvature. In the latter case, by a result in [2], cf. the case (c) in Theorem 1.4, after an appropriate rescaling, *F* is locally isometric to the Randers metric given by $F(x, y) = \alpha(x, y) - f_{x^k} y^k / \sqrt{1 - f(x)^2}$, where *f* is an eigenfunction of the standard Laplacian corresponding to the eigenvalue $\lambda = n$ with $\max_{x \in M} |f(x)| < 1$. Moreover, the flag curvature and the S-curvature of *F* are of the following forms:

$$\mathbf{K}(x, y) = \frac{1}{4} + \frac{3F(x, -y)}{4(1 - f(x)^2)F(x, y)}, \qquad \mathbf{S}(x, y) = (n+1)\frac{f(x)}{2\sqrt{1 - f(x)^2}}F(x, y).$$

It can be checked now that we have $\mathbf{K} > 0$. \Box

Acknowledgement

I would like to express my sincere to the Institute for Research in Fundamental Sciences (IPM) where this work was supported in part under grant No. 91530039.

References

- [1] H. Akbar-Zadeh, Champs de vecteurs projectifs sur le fibré unitaire, J. Math. Pures Appl. 65 (1986) 47–79.
- [2] X. Chen, X. Mo, Z. Shen, On the flag curvature of Finsler metrics of scalar curvature, J. Lond. Math. Soc. 68 (2003) 762-780.
- [3] X. Chen, Z. Shen, Randers metrics with special curvature properties, Osaka J. Math. 40 (2003) 87-101.
- [4] V.S. Matveev, On projective equivalence and pointwise projective relation of Randers metrics, Int. J. Math. 23 (9) (2012) 1250093 (14 pages).
- [5] M. Rafie-Rad, Some new characterizations of projective Randers metrics with constant S-curvature, J. Geom. Phys. 9 (4) (2012) 272–278.
- [6] M. Rafie-Rad, Special projective algebra of Randers metrics of constant S-curvature, Int. J. Geom. Methods Mod. Phys. 6 (2) (2012).
- [7] M. Rafie-Rad, B. Rezaei, On the projective algebra of Randers metrics of constant flag curvature, SIGMA 7 (2011) 085 (12 pages).