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It is proved that either every special projective vector field V on a Randers space (M, F =
α + β) is a conformal vector field of the Riemannian metric α2 − β2, or F is of isotropic
S-curvature. This result is applied to establish a projective Lichnérowicz–Obata-type result
on the closed manifolds with generic Randers metrics.
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r é s u m é

On prouve que, soit chaque champ projectif de vecteurs sur un espace de Randers (M, F =
α + β) est conforme à la métrique riemanienne α2 − β2, soit F est à S-courbure isotrope.
Ce résultat est appliqué à l’établissement d’un théorème de type de Lichnérowicz–Obata
sur les variétés fermées de Randers.

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The projective Lichnérowicz–Obata theorem in Riemannian geometry has been recently extended to closed Randers
spaces in [4], cf. Corollary 1.5. However, this result seems to be incomplete since, unlike its Riemannian prototype, it does
not imply the positivity of the flag curvature of the metric. A suggestion for arriving to the case of positive flag curvature is
to consider only a sub-class of projective geometry in order to establish a reduced Lichnérowicz–Obata-type theorem. As it
will be presented, the special projective geometry—which has been recently discussed in [5–7] for Randers metrics—is a good
candidate for such a purpose, since this is an immediate extension of the Riemannian projective geometry.

The results would imply that the special projective Randers geometry may refer to study one of the following cases:
(a) conformal transformations of an appropriate Riemannian space, (b) isometries of a Randers space, or (c) Randers spaces
of isotropic S-curvature. We prove the result for the pure Randers metrics:

Theorem 1.1. Let us suppose that (M, F = α +β) is a Randers space of dimension n � 2. Then, at least one of the following statements
holds:
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(i) every special projective vector field on (M, F ) is a conformal vector field of the Riemannian metric α2 − β2 ,
(ii) F is of isotropic S-curvature.

Theorem 1.1 implies the following result:

Theorem 1.2. Let us suppose that (M, F = α + β) is a closed and connected Randers space of dimension n � 2 and V is a special
projective vector field of F . Then, at least one of the following statements holds:

(i) V is a conformal vector field for the Riemannian metric α2 − β2 ,
(ii) there is a Randers metric F̂ such that V is a Killing vector field for F̂ ,

(iii) after an appropriate rescaling, F is of the following local form:

F (x, y) =
√|y|2 + |x|2|y|2 − 〈x, y〉2

1 + |x|2 − fxk yk√
1 − f 2(x)

, y ∈ TxM ∼= R
n, (1)

where f is an eigenfunction of the standard Laplacian satisfying � f = nf and maxx∈M | f | < 1. In particular, F is of positive flag
curvature.

All manifolds are assumed to be smooth and connected, the natural coordinates on the tangent manifold T M are denoted
by (xi, yi) and the derivations with respect to xk and yk are denoted by the subscripts xk and yk , respectively. Moreover, we
deal with pure and positive definite Randers metrics.

2. Special projective Finsler geometry

Two Finsler metrics F and F̃ on M are said to be projectively equivalent if they have the same forward geodesics. A Finsler
metric F is said to be locally projectively flat if, at any point x ∈ M , there is a neighborhood U such that F and the Euclidean
metric are projectively equivalent on U . Given a Finsler space (M, F ), a diffeomorphism φ : M −→ M is called a projective
transformation if F and φ∗ F are projectively equivalent.

Suppose that α =
√

aij yi y j is a Riemannian metric and β = bi(x)yi is a 1-form defined on M such that ‖β‖x :=
supy∈Tx M\{0} β(y)/α(y) < 1. Then the function F = α + β is a Finsler metric on M , which is called a Randers metric. The
geodesic spray coefficients of α and F are denoted respectively by the Gi

α and Gi , and the Levi-Civita connection of α is

denoted by ∇ . The covariant derivation of β is given by (∇ jbi)dx j := dbi − b jθi
j , where θi

j := Γ̃
j

ik dxk denote the associ-
ated connection forms. Let us stipulate the following conventions: ri j := 1

2 (∇ jbi + ∇ib j), si j := 1
2 (∇ jbi − ∇ib j), si

j := aihshj ,
s j := bi si

j and ei j := ri j + bi s j + b j si , e00 := ei j yi y j , s0 := si yi and si
0 := si

j y j . Then the geodesic spray coefficients Gi of F
are of the following form:

Gi = Gi
α +

(
e00

2F
− s0

)
yi + αsi

0. (2)

It is well known that a Randers metric F = α + β on M is locally projectively flat if and only if α is of constant sectional
curvature and if β is closed. The locally projectively flat Randers metrics with isotropic S-curvature has been characterized
by Chen, Mo and Shen in [2], cf. Theorem 1.3 and Theorem 1.4.

A projective transformation φ : M −→ M is said to be special if it preserves the E-curvature; in this case, φ changes the
geodesic spray coefficients as G̃ i(x, y) = Gi(x, y) + P (x, y)yi , where P = Pi(x)yi . The complete lift of any vector field V on

M is given by V̂ = V i ∂

∂xi + yk ∂V i

∂xk
∂

∂ yi . The Lie derivative operator with respect to the vector field V is denoted by LV̂ . It is

well known that, LV̂ yi = 0, LV̂ dxi = 0 and the differential operators LV̂ , ∂

∂xi , the exterior differential operator d and ∂

∂ yi

commute within any natural coordinates system on tangent manifold. The vector field V is called a projective vector field, if
there is a function P on TM0, called the projective factor, such that LV̂ Gi = P yi , see [1]. In this case, given any appropriate t ,
the local flow {φt} associated with V is a projective transformation. A projective vector field V is said to be special if the
projective factor P (x, y) is lift of a 1-form on M , i.e. P (x, y) = Pi(x)yi . Notice that, on the Riemannian spaces, given any
projective vector field V , the projective factor P (x, y) is linear with respect to y, while this property is a non-Riemannian
feature in a Finslerian background. The projective vector fields have several characterizations in the contexts, see Ref. [1] for
some such results. The following characterization is useful in the sequel:

Theorem 2.1. (See [5–7].) A vector field V is projective on a Randers space (M, F = α +β) if and only if V is projective on (M,α) and
LV̂ (αsi

0) = 0.

Given any vector field V , let us stipulate the notation t00 = LV̂ α2. Now, we prove the following characterization of
special projective vector fields on Randers spaces:
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Lemma 2.2. A vector field V on a Randers space (M, F = α + β) is special projective if and only if there is a 1-form P = Pi(x)yi such
that the following equations hold:

(1) 8α2βLV̂ Gi
α + (2α2LV̂ e00 − e00t00 − 8α2β(LV̂ s0 − P ))yi = 0,

(2) 4(α2 + β2)LV̂ Gi
α + (2βLV̂ e00 − 2e00LV̂ β − 4(α2 + β2)(LV̂ s0 − P ))yi = 0.

Proof. A vector field V on (M, F ) is special projective if and only if there is a 1-form P = Pi(x)yi on M such that LV̂ Gi =
P yi . By (2) and Theorem 2.1, this is equivalent to:

LV̂

(
Gi

α +
(

e00

2F
− s0

)
yi

)
= P yi . (3)

After expanding the terms, Eq. (3) is equivalent to the identities below:

0 = LV̂

(
Gi

α +
(

e00

2F
− s0

)
yi

)
− P yi = LV̂ Gi

α +LV̂

e00

2F
yi −LV̂ s0 yi − P yi

= LV̂ Gi
α + LV̂ e00

2F
yi − e00LV̂ F

2F 2
yi −LV̂ s0 yi − P yi

= LV̂ Gi
α + LV̂ e00

2F
yi − e00

t00
2α +LV̂ β

2F 2
yi −LV̂ s0 yi − P yi = 1

4αF 2

{
Rati + αIrrati},

where,

Rati = 8α2βLV̂ Gi
α + (

2α2LV̂ e00 − e00t00 − 8α2β(LV̂ s0 − P )
)

yi, (4)

Irrati = 4
(
α2 + β2)LV̂ Gi

α + (
2βLV̂ e00 − 2e00LV̂ β − 4

(
α2 + β2)(LV̂ s0 − P )

)
yi . (5)

Hence, V is a special projective vector field if and only if Rati = 0 and Irrati = 0, for every i = 1, . . . ,n. This completes the
proof. �
3. Proof of main theorems

Proof of Theorem 1.1. Let us suppose that V is an arbitrary special projective vector field on (M, F = α + β). From
Lemma 2.2, there is a 1-form P = Pi(x)yi on M such that Rati = 0 and Irrati = 0, for any index i; Notice that, Rati and
Irrati are given in (4) and (5). Now, it follows that:

0 = Rati − βIrrati

= 4
(
α2 − β2)βLV̂ Gi

α + 2
(
α2 − β2)LV̂ e00 yi − e00LV̂

(
α2 − β2)yi − 4β

(
α2 − β2)(LV̂ s0 − P )yi

= (
α2 − β2)Q i − e00LV̂

(
α2 − β2)yi (i = 1, . . . ,n),

where, Q i = {4βLV̂ Gi
α + 2LV̂ e00 yi − 4β(LV̂ s0 − P )yi}. Given any point x ∈ M , the irreducible polynomial (α2 − β2) ∈

R[y1, . . . , yn] divides the polynomials e00LV̂ (α2 − β2)yi (i = 1, . . . ,n). Notice that (α2 − β2) cannot divide yi for any
index i. Given any special projective vector field V , if (α2 − β2) divides LV̂ (α2 − β2), then it follows that V is a conformal
vector field of the Riemannian metric (α2 −β2) and this proves (i) in Theorem 1.1. Otherwise, (α2 −β2) divides e00; in this
case, F is of isotropic S-curvature, cf. [3], and this proves (ii). �
Proof of Theorem 1.2. Suppose that V is a special projective vector field on (M, F = α +β) which is not a conformal vector
field of the Riemannian metric α2 − β2. By Theorem 1.1, F is of isotropic S-curvature. Moreover, by a result in [4], cf.
Corollary 1.5, there is a Randers metric F̂ such that V is either a Killing vector field of F̂ or F is locally projectively flat
and α has positive constant sectional curvature. In the latter case, by a result in [2], cf. the case (c) in Theorem 1.4, after an
appropriate rescaling, F is locally isometric to the Randers metric given by F (x, y) = α(x, y) − fxk yk/

√
1 − f (x)2, where f

is an eigenfunction of the standard Laplacian corresponding to the eigenvalue λ = n with maxx∈M | f (x)| < 1. Moreover, the
flag curvature and the S-curvature of F are of the following forms:

K(x, y) = 1

4
+ 3F (x,−y)

4(1 − f (x)2)F (x, y)
, S(x, y) = (n + 1)

f (x)

2
√

1 − f (x)2
F (x, y).

It can be checked now that we have K > 0. �
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