Contents lists available at ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

Numerical analysis

Approximation by Müntz spaces on positive intervals

Approximation par espaces de Müntz sur un intervalle positif

Rachid Ait-Haddou^a, Marie-Laurence Mazure^b

^a Geometric Modeling and Scientific Visualization Center, King Abdullah University of Science and Technology, Saudi Arabia ^b Laboratoire Jean-Kuntzmann, Université Joseph-Fourier, BP 53, 38041 Grenoble cedex 9, France

ARTICLE INFO

Article history: Received 6 September 2013 Accepted 18 October 2013 Available online 12 November 2013

Presented by Philippe G. Ciarlet

ABSTRACT

The so-called Bernstein operators were introduced by S.N. Bernstein in 1912 to give a constructive proof of Weierstrass' theorem. We show how to extend his result to Müntz spaces on positive intervals.

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

RÉSUMÉ

En 1912, les opérateurs dits de Bernstein permirent à S.N. Bernstein de donner une preuve constructive du théorème de Weierstrass. Nous étendons ce résultat aux espaces de Müntz sur des intervalles positifs.

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The famous Bernstein operator \mathbb{B}_k of degree k on a given non-trivial interval [a, b], associates with any $F \in C^0([a, b])$ the polynomial function:

$$\mathbb{B}_k F(x) := \sum_{i=0}^k F\left(\left(1 - \frac{i}{k}\right)a + \frac{i}{k}b\right) B_i^k, \quad x \in [a, b],\tag{1}$$

where (B_0^k, \ldots, B_k^k) is the Bernstein basis of degree k on [a, b], *i.e.*, $B_i^k(x) := \binom{k}{i} (\frac{x-a}{b-a})^i (\frac{b-x}{b-a})^{k-i}$. It reproduces any affine function U on [a, b], in the sense that $\mathbb{B}_k U = U$. In [5], S.N. Bernstein proved that, for every function $F \in C^0([a, b])$, $\lim_{k \to +\infty} ||F - \mathbb{B}_k F||_{\infty} = 0$. In Section 3, we show how this result extends to the class of Müntz spaces (*i.e.*, spaces spanned by power functions) on a given positive interval [a, b], see Theorem 3.1. Beforehand, in Section 2, we briefly remind the reader how to define operators of the Bernstein-type in Extended Chebyshev spaces.

2. Extended Chebyshev spaces and Bernstein operators

Throughout this section, [a, b] is a fixed non-trivial real interval. For any $n \ge 0$, a given (n + 1)-dimensional space $\mathbb{E} \subset C^n([a, b])$ is said to be an *Extended Chebyshev space* (for short, EC-space) on [a, b] when any non-zero element of \mathbb{E} vanishes at most n times on [a, b] counting multiplicities up to (n + 1).

E-mail addresses: Rachid.AitHaddou@kaust.edu.sa (R. Ait-Haddou), mazure@imag.fr (M.-L. Mazure).

¹⁶³¹⁻⁰⁷³X/\$ – see front matter © 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. http://dx.doi.org/10.1016/j.crma.2013.10.018

Let \mathbb{E} be an (n + 1)-dimensional EC-space on [a, b]. Then, \mathbb{E} possesses bases (B_0, \ldots, B_n) such that, for $i = 0, \ldots, n, B_i$ vanishes exactly i times at a and (n - i) times at b and is positive on]a, b[. We say that such a basis is the *Bernstein basis* relative to (a, b) if it additionally satisfies $\sum_{i=0}^{n} B_i = 1$, where 1 is the constant function $1(x) = 1, x \in [a, b]$. Let us recall that \mathbb{E} possesses a Bernstein basis relative to (a, b) if and only if, firstly it contains constants, and secondly the n-dimensional space $D\mathbb{E} := \{DF := F' \mid F \in \mathbb{E}\}$ is an EC-space on [a, b]. Note that the second property is not an automatic consequence of the first one, see [8] and other references therein.

As an instance, given any pairwise distinct $\lambda_0, \ldots, \lambda_k$, the so-called *Müntz space* $M(\lambda_0, \ldots, \lambda_k)$, spanned over a given positive interval [a, b] (*i.e.*, a > 0) by the power functions x^{λ_i} , $0 \le i \le k$, is a (k+1)-dimensional EC-space on [a, b]. If $\lambda_0 = 0$, since $D(M(\lambda_0, \ldots, \lambda_k)) = M(\lambda_1 - 1, \ldots, \lambda_k - 1)$, the space $M(\lambda_0, \ldots, \lambda_k)$ possesses a Bernstein basis relative to (a, b).

For the rest of the section, we assume that $\mathbb{E} \subset C^n([a, b])$ contains constants and that $D\mathbb{E}$ is an (*n*-dimensional) EC-space on [a, b]. We denote by (B_0, \ldots, B_n) the Bernstein basis relative to (a, b) in \mathbb{E} .

Definition 2.1. A linear operator $\mathbb{B}: C^0([a, b]) \to \mathbb{E}$ is said to be a *Bernstein operator based on* \mathbb{E} when, firstly it is of the form:

$$\mathbb{B}F := \sum_{i=0}^{k} F(\zeta_i) B_i, \quad \text{for some } a = \zeta_0 < \zeta_1 < \dots < \zeta_n = b,$$
(2)

and secondly it reproduces a two-dimensional EC-space \mathbb{U} on [a, b], in the sense that $\mathbb{B}V = V$ for all $V \in \mathbb{U}$.

Any Bernstein operator \mathbb{B} is positive (*i.e.*, $F \ge 0$ implies $\mathbb{B}F \ge 0$) and shape preserving due to the properties of Bernstein bases in EC-spaces, see [8]. Note that everything concerning Bernstein-type operators in EC-spaces with no Bernstein bases can be deduced from Bernstein operators as defined above [8,9].

Theorem 2.2. Given $n \ge 2$, let $\mathbb{E} \subset C^n([a, b])$ contain constants. Assume that $D\mathbb{E}$ is an n-dimensional EC-space on [a, b]. For a function $U \in \mathbb{E}$, expanded in the Bernstein basis relative to (a, b) as $U := \sum_{i=0}^{n} u_i B_i$, the following properties are equivalent:

- (i) u_0, \ldots, u_n form a strictly monotonic sequence;
- (ii) there exists a nested sequence $\mathbb{E}_1 \subset \mathbb{E}_2 \subset \cdots \subset \mathbb{E}_{n-1} \subset \mathbb{E}_n := \mathbb{E}$, where $\mathbb{E}_1 := \operatorname{span}(\mathbb{1}, U)$ and where, for $i = 1, \dots, n-1$, \mathbb{E}_i is an (i + 1)-dimensional EC-space on [a, b];
- (iii) there exists a Bernstein operator based on \mathbb{E} which reproduces U.

In [8] it was proved that there exists a one-to-one correspondence between the set of all Bernstein operators based on \mathbb{E} and the set of all two-dimensional EC-spaces \mathbb{U} they reproduce. In particular, if (i) holds, then the unique Bernstein operator based on \mathbb{E} reproducing *U* is defined by (2) with:

$$\zeta_i := U^{-1}(u_i), \quad 0 \leqslant i \leqslant n. \tag{3}$$

Note that this is meaningful because (i) implies the strict monotonicity of U on [a, b]. Condition (ii) of Theorem 2.2 yields the following corollary.

Corollary 2.3. *Given an integer* $n \ge 1$ *, consider a nested sequence:*

$$\mathbb{E}_n \subset \mathbb{E}_{p+1} \subset \dots \subset \mathbb{E}_p \subset \mathbb{E}_{p+1} \subset \dots, \tag{4}$$

where \mathbb{E}_n contains constants and for any $p \ge n$, $D\mathbb{E}_p$ is a *p*-dimensional EC-space on [a, b]. Let $U \in \mathbb{E}_n$ be a non-constant function reproduced by a Bernstein operator \mathbb{B}_p based on \mathbb{E}_n . Then, U is also reproduced by a Bernstein operator \mathbb{B}_p based on \mathbb{E}_p for any p > n.

Remark 2.4. In the situation described in Corollary 2.3, a natural question arises: given $F \in C^0([a, b])$, does the sequence $\mathbb{B}_k F$, $k \ge n$, converges to F in $C^0([a, b])$ equipped with the infinite norm? Obviously, for this to be true for any $F \in C^0([a, b])$, it is necessary that $\bigcup_{k\ge n} \mathbb{E}_k$ be dense in $C^0([a, b])$. The example of Müntz spaces proves that this is not always satisfied.

3. Müntz spaces over positive intervals

Throughout this section, we consider a fixed positive interval [a, b], a fixed infinite sequence of real numbers λ_k , $k \ge 0$, assumed to satisfy:

$$0 = \lambda_0 < \lambda_1 < \dots < \lambda_k < \lambda_{k+1} < \dots, \qquad \lim_{k \to +\infty} \lambda_k = +\infty.$$
(5)

We are concerned with the corresponding nested sequence of Müntz spaces:

$$M(\lambda_0) \subset M(\lambda_0, \lambda_1) \subset \dots \subset M(\lambda_0, \dots, \lambda_k) \subset M(\lambda_0, \dots, \lambda_k, \lambda_{k+1}) \subset \dots$$
(6)

Given any $n \ge 1$, for each $k \ge n$, we can select a Bernstein operator \mathbb{B}_k based on $M(\lambda_0, \ldots, \lambda_k)$. Assume the sequence \mathbb{B}_k , $k \ge n$, to satisfy:

$$\lim_{k \to +\infty} \|F - \mathbb{B}_k F\|_{\infty} = 0 \quad \text{for any } F \in C^0([a, b]).$$
⁽⁷⁾

Then, the union of all spaces $M(\lambda_0, ..., \lambda_k)$, $k \ge 0$, is dense in $C^0([a, b])$ equipped with the infinite norm. As is well known, this holds if and only if the sequence (5) fulfils the so-called *Müntz density condition* below [4,6]:

$$\sum_{i \ge 1} \frac{1}{\lambda_i} = +\infty.$$
(8)

As an instance, the Müntz condition (8) is satisfied when $\lambda_k = \ell + 1$ for all $k \ge 1$. This case was addressed in [8]. Convergence – in the sense of (7) – was proved there under the assumption that each \mathbb{B}_k reproduced the function x^{λ_1} . This convergence result includes the classical Bernstein operators [5] obtained with $\ell = 0$. Below we extend it to the general interesting situation of sequences of Müntz Bernstein operators \mathbb{B}_k all reproducing the same two-dimensional EC-space (see Remark 2.4).

Theorem 3.1. Given $n \ge 1$, let $\mathbb{E}_1 \subset M(\lambda_0, ..., \lambda_n)$ be a two-dimensional EC-space reproduced by a Bernstein operator \mathbb{B}_k based on $M(\lambda_0, ..., \lambda_k)$ for any $k \ge n$. Then, if the Müntz density condition (8) holds, the sequence \mathbb{B}_k , $k \ge n$, converges in the sense of (7).

Before starting the proof, let us introduce some notations. For $k \ge 1$, denote by $(B_{k,0}, \ldots, B_{k,k})$ the Bernstein basis relative to (a, b) in the Müntz space $M(\lambda_0, \ldots, \lambda_k)$. We consider the functions:

 $U^*(x) = x^{\lambda_1}, \qquad V_p(x) := x^{\lambda_p}, \quad p \ge 2, \ x \in [a, b],$

expanded in the successive Bernstein bases as:

$$U^* = \sum_{i=0}^{k} u_{k,i}^* B_{k,i} \quad \text{for all } k \ge 1, \qquad V_p = \sum_{i=0}^{k} v_{p,k,i} B_{k,i} \quad \text{for all } k \ge p.$$
(9)

With these notations, the key-point to prove Theorem 3.1 is the following lemma, for the proof of which we refer to [1], see also [2].

Lemma 3.2. Assume that the Müntz density condition (8) holds. Then, we have:

$$\lim_{k \to +\infty} \max_{0 \le i \le k} \left| \left(u_{k,i}^* \right)^{\frac{\lambda_p}{\lambda_1}} - v_{p,k,i} \right| = 0 \quad \text{for all } p \ge 2.$$

$$\tag{10}$$

Proof of Theorem 3.1. • Let us start with the simplest example n = 1. Then, $\mathbb{E}_1 = \text{span}(\mathbb{1}, U^*)$. For each $k \ge 1$, the unique operator \mathbb{B}_k^* which reproduces \mathbb{E}_1 is given by:

$$\mathbb{B}_{k}^{*}F := \sum_{i=0}^{k} F(\zeta_{k,i}^{*}) B_{k,i}, \quad \text{with, for } i = 0, \dots, k, \ \zeta_{k,i}^{*} := (u_{k,i}^{*})^{\frac{1}{\lambda_{1}}}.$$
(11)

According to Korovkin's theorem for positive linear operators [7], we just have to select a function F so that 1, U^* , F span a three-dimensional EC-space on [a, b] and prove that $\lim_{k \to +\infty} ||F - \mathbb{B}_k^*F||_{\infty} = 0$ for this specific F. We can thus choose for instance $F := V_2$. Actually, we will more generally prove the result with $F = V_p$, for any $p \ge 2$. Using (9) and (11), we obtain, for any $k \ge p$,

$$\left\|\mathbb{B}_{k}^{*}V_{p}-V_{p}\right\|_{\infty}=\left\|\sum_{i=0}^{k}\left(V_{p}(\zeta_{k,i}^{*})-v_{p,k,i}\right)B_{k,i}\right\|_{\infty}\leqslant\max_{0\leqslant i\leqslant k}\left|V_{p}(\zeta_{k,i}^{*})-v_{p,k,i}\right|.$$
(12)

On account of (11), Lemma 3.2 yields the expected result:

$$\lim_{k \to +\infty} \left\| \mathbb{B}_k^* V_p - V_p \right\|_{\infty} = 0 \quad \text{for each } p \ge 2.$$

• We now assume that n > 1. Select a strictly increasing function $U \in \mathbb{E}_1$. Condition (ii) of Theorem 2.2 enables us to select a function $V \in M(\lambda_0, ..., \lambda_n)$ so that the functions $\mathbb{1}, U, V$ span a three-dimensional EC-space on [a, b]. For any $k \ge n$, expand U, V as:

$$U = \sum_{i=0}^{k} u_{k,i} B_{k,i}, \qquad V = \sum_{i=0}^{k} v_{k,i} B_{k,i}.$$

We know that, for each $k \ge n$, the sequence $(u_{k,0}, \ldots, u_{k,k})$ is strictly increasing, and that the Bernstein operator \mathbb{B}_k is defined by formula (2) with $\zeta_{k,i} := U^{-1}(u_{k,i})$ for $i = 0, \ldots, k$. Via expansions of U and V in the basis $(\mathbb{1}, U^*, V_2, \ldots, V_n)$ of the Müntz space $M(\lambda_0, \ldots, \lambda_n)$, Lemma 3.2 readily proves that:

$$\lim_{k \to +\infty} \max_{0 \le i \le k} |U(\zeta_{k,i}^*) - u_{k,i}| = 0 = \lim_{k \to +\infty} \max_{0 \le i \le k} |V(\zeta_{k,i}^*) - v_{k,i}|.$$
(13)

The left part in (13) can be written as $\lim_{k\to+\infty} \max_{0 \le i \le k} |U(\zeta_{k,i}^*) - U(\zeta_{k,i})| = 0$. On this account, the uniform continuity of the function $V \circ U^{-1}$ and the right part in (13) prove that $\lim_{k\to+\infty} \max_{0 \le i \le k} |V(\zeta_{k,i}) - v_{k,i}| = 0$, thus implying that $\lim_{k\to+\infty} \|\mathbb{B}_k V - V\|_{\infty} = 0$. By Korovkin's theorem, (7) is satisfied. \Box

Remark 3.3. Given $n \ge 2$, one can apply Theorem 3.1 with $\mathbb{E}_1 := \operatorname{span}(\mathbb{1}, V_n) = M(\lambda_0, \lambda_n)$, due to the nested sequence of Müntz spaces $M(\lambda_0, \lambda_1, \dots, \lambda_{i-1}, \lambda_n)$ for $1 \le i \le n$. Note that Theorem 3.1 contains in particular the *Bernstein-type result* expected in [3].

References

- [1] R. Ait-Haddou, Dimension elevation in Müntz spaces: a new emergence of the Müntz condition, in press, arXiv:1309.0938.
- [2] R. Ait-Haddou, Y. Sakane, T. Nomura, A Müntz type theorem for a family of corner cutting schemes, Comput. Aided Geom. Design 30 (2013) 240–253.
- [3] J.M. Aldaz, O. Kounchev, H. Render, Bernstein operators for exponential polynomials, Constr. Approx. 20 (2009) 345–367.
- [4] J.M. Almira, Müntz type theorems I, Surv. Approx. Theory 3 (2007) 152-194.
- [5] S.N. Bernstein, Démonstration du théorème de Weierstrass fondée sur le calcul des probabilités, Commun. Soc. Math. Kharkov 13 (1912) 1-2.
- [6] P. Borwein, T. Erdélyi, Polynomials and Polynomial Inequalities, Graduate Texts in Mathematics, vol. 161, Springer-Verlag, New York, 1995.
- [7] P.P. Korovkin, Linear Operators and Approximation Theory, Hindustan Publ. Corp., 1960.
- [8] M.-L. Mazure, Bernstein-type operators in Chebyshev spaces, Numer. Algorithms 52 (2009) 93-128.
- [9] M.-L. Mazure, Finding all systems of weight functions associated with a given Extended Chebyshev space, J. Approx. Theory 163 (2011) 363–376.