

Contents lists available at ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

Complex analysis

Global regularity and L^p -estimates for $\bar{\partial}$ on an annulus between two strictly pseudoconvex domains in a Stein manifold

Régularité globale et estimations L^p pour $\overline{\partial}$ sur une couronne entre deux domaines strictement pseudo-convexes dans une variété de Stein

Shaban Khidr^{a,1}, Osama Abdelkader^b

^a Mathematics Department, Faculty of Science, King Abdelaziz University, North Jeddah, Jeddah, Saudi Arabia ^b Mathematics Department, Faculty of Science, El-minia University, El-minia, Egypt

A R T I C L E I N F O

Article history: Received 14 March 2013 Accepted after revision 16 October 2013 Available online 7 November 2013

Presented by Jean-Pierre Demailly

ABSTRACT

In this note, we prove an L^2 -existence theorem for the $\bar{\partial}$ -Neumann operator and the regularity for the $\bar{\partial}$ -equation on an annulus type domain $D = D_1 \setminus \overline{D_2}$, where D_1 and D_2 are strictly pseudoconvex domains with smooth boundaries in a Stein manifold X of complex dimension $n \ge 3$, such that $\overline{D_2} \subset D_1 \Subset X$. Moreover, we obtain Hölder and L^p estimates for the $\bar{\partial}$ -equation on strictly pseudoconcave domains with smooth C^3 -boundaries in X.

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

RÉSUMÉ

Dans cette Note, nous démontrons un théorème d'existence L^2 pour l'opérateur de Neumann $\overline{\partial}$ et la régularité globale au bord de l'équation $\overline{\partial}$ sur de domaine de type couronne $D = D_1 \setminus \overline{D}_2$ où D_1 et D_2 sont des domaines strictement pseudo-convexes dont les bords sont réguliés dans une variété de Stein X de dimension complexe $n \ge 3$, tels que $\overline{D}_2 \subset D_1 \Subset X$. De plus, nous obtenons des estimations de Hölder et L^p , $1 \le p \le \infty$, pour $\overline{\partial}$ sur des domaines strictement pseudo-concaves de frontière C^3 dans X.

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction and main results

The study of the $\bar{\partial}$ -Neumann problem and the regularity of the $\bar{\partial}$ -equation have attracted a lot of attention (see e.g., [10,15,11], and [7]). More precisely, by introducing the weighted $\bar{\partial}$ -Neumann operator, Kohn [11] solved extensively this problem on bounded pseudoconvex domain in a complex manifold with smooth boundary, which can be exhausted by strictly pseudoconvex domains.

On the annulus type domain $M = M_1 \setminus \overline{M_2}$ between two smooth pseudoconvex domains M_1 and M_2 in \mathbb{C}^n such that $\overline{M_2} \subset M_1 \Subset \mathbb{C}^n$, the closed range property and the global boundary regularity for $\overline{\partial}$ were studied by Shaw [15] for

E-mail addresses: skhidr@kau.edu.sa (S. Khidr), usamakader882000@yahoo.com (O. Abdelkader).

¹ Permanent address: Mathematics Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt.

¹⁶³¹⁻⁰⁷³X/\$ – see front matter © 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. http://dx.doi.org/10.1016/j.crma.2013.10.020

(r, s)-forms, where $0 \le r \le n$, $1 \le s$, $\le n - 2$ and $n \ge 3$. The critical case when s = n - 1 was established in Shaw [16]. In this case, the space of harmonic forms is infinite dimensional.

Motivated by the same problem for an annulus-type domain between two smooth strictly *q*-convex domains in \mathbb{C}^n , Khidr and Abdelkader [10] showed that the $\bar{\partial}$ -operator has closed range in the L^2 -setting and then they proved the L^2 -existence theorem for the $\bar{\partial}$ -Neumann operator for $\bar{\partial}$ -closed (r, s)-forms, where $r \ge 0$ and $q \le s < n - q - 1$.

As a result, the exact regularity for the Bergman projection and the $\bar{\partial}$ -Neumann operators is proved. Consequently, they proved that for a $\bar{\partial}$ -closed (r, s)-form $(r \ge 0$ and $q \le s < n - q - 1)$ with C^{∞} coefficients smooth up to the boundary, there exists a (r, s - 1)-form, smooth up to the boundary, which solves the $\bar{\partial}$ -equation on such annuli domains.

In addition, estimates in Hölder and L^p -categories, $1 \le p \le \infty$, for solutions of the $\bar{\partial}$ -equation are obtained for $\bar{\partial}$ -closed (r, s)-form, $q \le s < n - q - 1$, on strictly *q*-concave domains with smooth C^3 boundaries in \mathbb{C}^n .

It is now essential to extend the results in [10] to annuli-type domains in a Stein manifold and vector bundle-valued forms, which is the main aim of the present note. The solvability and regularity of the $\bar{\partial}$ -equation on domains of complex manifolds have been discussed by several authors (see e.g., [5,7,6,4,9,1,2,13,18]).

We first fix the following standard notation. Let X be a Stein manifold of complex dimension $n \ge 3$ and $E \xrightarrow{\pi} X$ be a holomorphic Hermitian vector bundle of rank N over X, whose dual is E^* . Let $\{U_j\}$; $j \in I$, be an open covering of X consisting of coordinates neighborhoods U_j with holomorphic coordinates $z_j = (z_j^1, z_j^2, \ldots, z_j^n)$ over which E is trivial, namely $\pi^{-1}(U_j) = U_j \times \mathbb{C}^N$. Let Ω be a relatively compact domain in X with smooth boundary $\partial\Omega$. Denote by $\Lambda^{r,s}(\Omega, E)$, $0 \le r \le n$; $0 \le s \le n$, the space of E-valued forms of type (r, s) and of class C^{∞} on Ω and $L_{r,s}^2(\Omega, E)$ the Hilbert space obtained by completing the space $\Lambda_c^{r,s}(\Omega, E)$ of forms in $\Lambda^{r,s}(\Omega, E)$ with compact supports in Ω under the norm associated with the scalar product defined by the Hermitian metrics on X and on the fibers of E. $\Lambda^{r,s}(\overline{\Omega}, E)$ denotes the subspace of $\Lambda^{r,s}(\Omega, E)$ consisting of those (r, s)-forms that can be extended smoothly up to and including the boundary. Let $\overline{\partial}$: $L_{r,s}^2(\Omega, E) \to L_{r,s+1}^2(\Omega, E)$ be the weak maximal closed extension of the original $\overline{\partial}$ on C^{∞} -forms and $\overline{\partial^*} : L_{r,s+1}^2(\Omega, E) \to$ $L_{r,s}^2(\Omega, E) = \{\alpha \in \text{Dom}(\overline{\partial}) \cap \text{Dom}(\overline{\partial^*}) \subset L_{r,s}^2(\Omega, E) | \overline{\partial}\alpha = \overline{\partial^*}\alpha = 0\}$ be the space of harmonic forms. The Banach spaces $L_{r,s}^p(\Omega, E); 1 \le p \le \infty$, the Sobolev spaces $W_{r,s}^k(\Omega, E); k \ge 0$, and the norms on these spaces are defined in the usual manner.

Finally, for $1 \le p < \infty$ and p' such that $\frac{1}{p} + \frac{1}{p'} = 1$, we denote by $L_{n-r,n-s}^{p'}(\Omega, E^*)$ the dual space to $L_{r,s}^p(\Omega, E)$. Our main results are as follows:

Theorem 1.1. Let X be a Stein manifold of complex dimension n and $E \xrightarrow{\pi} X$ be a holomorphic Hermitian vector bundle of rank N over X. Let $D = D_1 \setminus \overline{D_2}$ be an annulus domain between two strictly pseudoconvex domains D_1 and D_2 with smooth boundaries such that $\overline{D_2} \subset D_1 \subseteq X$. Then for every $\overline{\partial}$ -closed form f in $\Lambda^{r,s}(\overline{D}, E)$, $f \perp \mathcal{H}_{r,s}(D, E)$, where $0 \leq r \leq n, 1 \leq s \leq n-2$ and $n \geq 3$, there exists a form u in $\Lambda^{r,s-1}(\overline{D}, E)$ such that $\overline{\partial u} = f$.

For s = n - 1, we assume that the restriction of f to ∂D_2 satisfies the compatibility condition:

$$\int_{\partial D_2} f \wedge \phi = 0 \quad \text{for every } \phi \in \Lambda^{n-r,0}(D_2, E^*) \cap \operatorname{Ker}(\bar{\partial})$$

and the same conclusion holds.

Theorem 1.2. Let $D = D_1 \setminus \overline{D}_2 \Subset X$ be the annulus domain between two strictly pseudoconvex domains D_1 and D_2 with smooth C^3 boundaries in an n-dimensional Stein manifold X such that $\overline{D}_2 \subset D_1 \Subset X$ and $E \xrightarrow{\pi} X$ be a holomorphic Hermitian vector bundle of rank N over X. Then for every $\overline{\partial}$ -closed form f in $L^1_{r,s}(D, E)$, $0 \leqslant r \leqslant n$, $1 \leqslant s \leqslant n - 2$ and $n \geqslant 3$, there exists a form g in $L^1_{r,s-1}(D, E)$ such that $\overline{\partial}g = f$. If f is C^∞ , then g is also C^∞ . Moreover, if f is in $L^p_{r,s}(D, E)$, $1 \leqslant p \leqslant \infty$, then g is in $L^p_{r,s-1}(D, E)$ and satisfies the estimates:

$$\|g\|_{L^{p}_{r,s-1}(D,E)} \leq K \|f\|_{L^{p}_{r,s}(D,E)}; \quad 1 \leq p \leq \infty.$$
(1.1)

When s = n - 1, if we assume that the restriction of f to ∂D_2 satisfies:

$$\int_{\partial D_2} f \wedge \phi = 0 \quad \text{for every } \phi \in L_{n-r,0}^{p'}(D_2, E^{\star}) \cap \operatorname{Ker}(\bar{\partial}),$$

then the same statement and (1.1) hold for all $1 \leq p < \infty$.

In addition, if $f \in L^{\infty}_{r,s}(D, E)$, $0 \leq r \leq n, 1 \leq s \leq n-2$, then g satisfies the $\frac{1}{2}$ -Hölder estimate

$$\left\|g(z)-g(z')\right\| \leq K \left|z-z'\right|^{\frac{1}{2}} \|f\|_{L^{\infty}_{r,s}(D,E)}, \quad (z,z') \in D \times D$$

the solution g depends linearly on f and the positive constant K > 0 is independent of f, p, and small C^3 perturbations of D.

2. Proof of Theorem 1.1

The proof is given in several steps throughout the rest of this section. We first extend the $\frac{1}{2}$ -subelliptic estimate proved in [10] to *E*-valued forms.

Let $\omega_1, \ldots, \omega_N$ be an orthonormal basis on $E_z = \pi^{-1}(z)$ for every, $z \in U_j$; $j \in I$. Thus every *E*-valued (r, s)-form *f* can be written locally, on U_j , as $f(z) = \sum_{\mu=1}^N f^{\mu}(z)\omega_{\mu}(z)$, where f^{μ} are the components of the restriction of *f* on U_j . Since ∂D is compact, there exists a finite number of elements of the covering $\{U_j\}$, say, U_{j_v} ; $v = 1, 2, \ldots, m$ such that $\bigcup_{\nu=1}^m U_{j_\nu}$ cover ∂D . Let *U* be a small neighborhood of a given boundary point $\zeta \in \partial D_1$ (or $\zeta \in \partial D_2$) such that $U \Subset V \Subset U_{j_\nu}$, for a certain $j_v \in I$. If $f \in \text{Dom}(\bar{\partial}) \cap \text{Dom}(\bar{\partial}^*) \cap L^2_{r,s}(D, E)$, $0 \leq r \leq n$, $1 \leq s \leq n-2$, on applying the $\frac{1}{2}$ -subelliptic estimate of [10] to each f^{μ} and adding for $\mu = 1, \ldots, N$, we get $\frac{1}{2}$ -subelliptic estimate for $f \mid_{D \cap U_{j_\nu}}$. Using a partition of unity, we obtain the estimate:

$$\|f\|_{W^{\frac{1}{2}}_{r,s}(D,E)} \leq C \left(\|\bar{\partial}f\|_{L^{2}_{r,s+1}(D,E)}^{2} + \|\bar{\partial}^{*}f\|_{L^{2}_{r,s-1}(D,E)}^{2} + \|f\|_{L^{2}_{r,s}(D,E)}^{2} \right).$$

$$(2.1)$$

The estimate (2.1) and arguments similar to those in [5] and [10] imply the following L^2 -existence theorem for the $\bar{\partial}$ -Neumann operator.

Theorem 2.1. Let the situations be as in Theorem 1.1. Then for each $0 \le r \le n$ and $1 \le s \le n-2$, the $\bar{\partial}$ -Neumann operator $N_{r,s}$: $L^2_{r,s}(D, E) \rightarrow L^2_{r,s}(D, E)$ exists and $\mathcal{H}_{r,s}(D, E)$ is of finite dimension. Moreover, for every $f \in L^2_{r,s}(D, E)$, we have the orthogonal decomposition:

$$f = \bar{\partial}\bar{\partial}^* N_{r,s} f + \bar{\partial}^* \bar{\partial} N_{r,s} f + H_{r,s} f$$
(2.2)

where $H_{r,s}$: $L^2_{r,s}(D, E) \to \mathcal{H}_{r,s}(D, E)$ is the orthogonal projection.

In addition, the $\bar{\partial}$ -Neumann operator $N_{r,s}$ satisfies the following properties:

- (1) $N_{r,s}H_{r,s} = H_{r,s}N_{r,s} = 0$. $N_{r,s}\Box_{r,s} = \Box_{r,s}N_{r,s} = Id H_{r,s}$ on $Dom(\Box_{r,s})$, where *Id* is the identity operator.
- (2) $\bar{\partial}N_{r,s-1} = N_{r,s}\bar{\partial}$ on $\text{Dom}(\bar{\partial})$ and $\bar{\partial}^*N_{r,s+1} = N_{r,s}\bar{\partial}^*$ on $\text{Dom}(\bar{\partial}^*)$.
- (3) If (2.2) holds, then if $\bar{\partial} f = 0$ and $f \perp \mathcal{H}_{r,s}(D, E)$, so $f = \bar{\partial} \bar{\partial}^* N_{r,s} f$ and $u = \bar{\partial}^* N_{r,s} f$ is the unique solution to the equation $\bar{\partial} u = f$ which is orthogonal to Ker $(\bar{\partial})$ with $\|u\|_{L^2_{r,s-1}(D,E)} \leq C_s \|f\|_{L^2_{r,s}(D,E)}$.
- (4) $N_{r,s}(\Lambda^{r,s}(\overline{D}, E)) \subseteq \Lambda^{r,s}(\overline{D}, E)$, and for each $k \in \mathbb{R}$ there is a positive constant C_s such that the estimate

$$\|N_{r,s}f\|_{W^{k+1}_{r,s}(D,E)} \leq C_s \|f\|_{W^k_{r,s}(D,E)}$$

holds for all $f \in \Lambda^{r,s}(\overline{D}, E)$.

Let *D* be given as in Theorem 1.1. By the same way for bounded pseudoconvex domains, we recall that a differential operator is said to be globally regular if it maps the space $\Lambda^{r,s}(\overline{D}, E)$ continuously to itself, and is called exactly regular if it maps the Sobolev spaces $W_{r,s}^k(D, E)$, $k \ge 0$, to themselves. The Bergman projections $P_{r,s}$ are the orthogonal projections of the space of square integrable (r, s)-forms onto the subspace of $\overline{\partial}$ -closed (r, s)-forms. A direct relation between the Bergman projection and the $\overline{\partial}$ -Neumann operator $N_{r,s}$ is given by Kohn's formulas $P_{r,s-1} = Id - \overline{\partial}^* N_{r,s}\overline{\partial}$ for $r \ge 0$ and $1 \le s \le n-2$. We refer to [17] for more information on the relationship between the regularity properties of the $\overline{\partial}$ -Neumann operators and the Bergman projections.

Theorem 2.2. Let X, E, and D be given as in Theorem 1.1, then the Bergman projection $P_{r,s-1}$ and the $\bar{\partial}$ -Neumann operator $N_{r,s}$ are continuous on the Sobolev spaces $W_{r,s-1}^k(D, E)$ and $W_{r,s}^k(D, E)$ respectively for all $0 \le r \le n$, $1 \le s \le n-2$, and $k \ge 0$. Moreover, there exists a constant $C_k > 0$ such that:

$$\|N_{r,s}f\|_{W^{k}_{r,s}(D,E)} \leq C_{k} \|f\|_{W^{k}_{r,s}(D,E)}; \quad f \in W^{k}_{r,s}(D,E)$$
$$\|P_{r,s-1}f\|_{W^{k}_{r,s-1}(D,E)} \leq C_{k} \|f\|_{W^{k}_{r,s-1}(D,E)}; \quad f \in W^{k}_{r,s-1}(D,E)$$

Proof. The proof follows by applying Theorem 2.2 in [10] to the components f^{μ} of f as in the proof of the estimate (2.1), and using the density of $\Lambda^{r,s}(\overline{D}, E)$ in $W^k_{r,s}(D, E)$ (see [14, Theorem 3.29]). \Box

Corollary 2.3. Let X, E, and D be given as above, then the canonical solution operators $\bar{\partial}N_{r,s}$, $\bar{\partial}^*N_{r,s}$, and $\bar{\partial}^*\bar{\partial}N_{r,s}$ (and hence $\bar{\partial}\bar{\partial}^*N_{r,s} = P_{r,s}$), $0 \le r \le n, 1 \le s \le n-2$, are exactly regular as the $\bar{\partial}$ -Neumann operator $N_{r,s}$ is.

Theorem 2.4. Under the above assumptions, the $\bar{\partial}$ -Neumann operator $N_{r,s}$ is exactly regular for all $0 \le r \le n$ and $1 \le s \le n-2$ if and only if the Bergman projections $P_{r,s-1}$, $P_{r,s}$ and $P_{r,s+1}$ are exactly regular.

Proof. The proof follows from the idea in [3] and depends on the Kohn's weighted L^2 -theory for the $\bar{\partial}$ -Neumann operator in [11].

By Theorem 2.1(3), Theorem 2.2, and the density of $\Lambda^{r,s}(\overline{D}, E)$ in $W_{r,s}^k(D, E)$, the following corollary is immediate.

Corollary 2.5. Let X, E, and D be given as above, then for every $\bar{\partial}$ -closed form f in $W_{r,s}^k(D, E)$, $f \perp \mathcal{H}_{r,s}(D, E)$, where $0 \leq r \leq n$, $1 \leq s \leq n-2$, and $k \geq 0$, there exists a form u in $W_{r,s-1}^k(D, E)$ that solves the equation $\bar{\partial} u = f$ and satisfies the estimates $\|u\|_{W_{r,s-1}^k(D)} \leq C_k \|f\|_{W_{r,s}^k(D)}$.

When s = n - 1, if we assume furthermore that the restriction of f to ∂D_2 satisfies the condition $\int_{\partial D_2} f \wedge \phi = 0$ for every $\phi \in L^2_{n-r,0}(D_2, E^*) \cap \text{Ker}(\bar{\partial})$, then the same conclusion holds.

End proof of Theorem 1.1. By Corollary 2.5, for each $k \ge 0$, there exists $u_k \in W_{r,s-1}^k(D, E)$ such that $\bar{\partial}u_k = f$. We modify each u_i by an element of Ker($\bar{\partial}$) in order to construct a telescoping series that belongs to $W_{r,s}^k(D, E)$ for each $k \ge 1$. To conclude the proof, we first claim that $W_{r,s}^k(M) \cap \text{Ker}(\bar{\partial})$ is dense in $W_{r,s}^m(D, E) \cap \text{Ker}(\bar{\partial})$ for any $k > m \ge 0$. Since $\Lambda^{r,s}(\overline{D}, E)$ is dense in $W_{r,s}^m(D, E)$, $m \ge 0$, in the $W_{r,s}^m(D, E)$ -norm, then for a given $\eta \in W_{r,s}^m(D, E) \cap \text{Ker}(\bar{\partial})$, there is a sequence $\eta_j \in \Lambda^{r,s}(\overline{D}, E)$ that converges to η in the $W_{r,s}^m(D, E)$ -norm, i.e. $\|\eta_j - \eta\|_{W_{r,s}^m(D, E)} \to 0$ as $j \to \infty$. $\bar{\partial}\eta = 0$ implies that $\eta - P_{r,s}\eta = \bar{\partial}^* N_{r,s+1}\bar{\partial}\eta = 0$, so $\eta = P_{r,s}\eta$. Let $\hat{\eta}_j = P_{r,s}\eta_j$. $\hat{\eta}_j \in W_{r,s}^k(D, E) \cap \text{Ker}(\bar{\partial})$, since the Bergman projection $P_{r,s}$ is a bounded operator on $W_{r,s}^k(D, E)$. By the same reason, we have $\|\hat{\eta}_j - \eta\|_{W_{r,s}^m(D, E)} = \|P_{r,s}(\eta_j - \eta)\|_{W_{r,s}^m(D, E)} \le C \|\eta_j - \eta\|_{W_{r,s}^m(D, E)} \to 0$ as $j \to \infty$. This implies that $\hat{\eta}_j \to \eta$ in the $W_{r,s}^m(D, E)$ -norm. Thus, indeed, $W_{r,s}^k(D, E) \cap \text{Ker}(\bar{\partial})$ is dense in $W_{r,s}^m(D, E) \cap \text{Ker}(\bar{\partial})$ for any $k > m \ge 0$.

Next, using this result and on following the inductive arguments due to [12, p. 230], we construct a sequence $\tilde{u}_k \in W_{r,s-1}^k(D, E)$, $\bar{\partial}\tilde{u}_k = f$, and $\|\tilde{u}_{k+1} - u_k\|_{W_{r,s-1}^k(D, E)} \leq 2^{-k}$ as follows:

$$\widetilde{u}_1 = u_1, \qquad \widetilde{u}_2 = u_2 + v_2,$$

where $v_2 \in W^2_{r,s-1}(D, E) \cap \text{Ker}(\bar{\partial})$ is such that:

$$\|\widetilde{u}_2 - u_1\|_{W^1_{r,s-1}(D,E)} \leq 2^{-1}$$

and in general:

$$\tilde{u}_{i+1} = u_{i+1} + v_{i+1}$$

where $v_{k+1} \in W_{r,s-1}^{k+1}(D, E) \cap \text{Ker}(\bar{\partial})$ is such that:

$$\|\widetilde{u}_{k+1} - u_k\|_{W_{r,c-1}^k(D,E)} \leq 2^{-k}.$$

Clearly $\bar{\partial} \widetilde{u}_k = f$, so set:

$$u = \widetilde{u}_j + \sum_{k=j}^{\infty} (\widetilde{u}_{k+1} - \widetilde{u}_k), \quad j \in \mathbb{N}.$$

It follows that $u \in W_{r,s-1}^k(D, E)$ for each $k \in \mathbb{N}$, and hence $u \in \Lambda^{r,s-1}(D, E)$ and $\overline{\partial}u = f$. The general case is obtained from an interpolation of linear operators. By the Sobolev embedding theorem, $u \in \Lambda^{r,s-1}(\overline{D}, E)$. The proof is complete. \Box

3. Proof of Theorem 1.2

The proof is also given in several steps throughout the rest of this section. We begin by extending the local result in [10] to the current case. Let $D = D_1 \setminus \overline{D}_2 \Subset X$ be the annulus domain between two strictly pseudoconvex domains D_1 and D_2 in an *n*-dimensional Stein manifold X and $\rho : \mathbb{U} \to \mathbb{R}$ be a \mathcal{C}^3 defining function of D_2 . Let $\zeta_0 \in \partial D_2$ be an arbitrary fixed point. Then there exists $U_j \Subset V \Subset \mathbb{U}$, for a certain $j \in I$, such that $\zeta_0 \in U_j$. Let $z_j : U_j \to \mathbb{C}^n$ be a holomorphic coordinate on U_j such that $z_j(\zeta_0) = 0$; there is a neighborhood $W_\delta \subset U_j$ of ζ_0 such that $z_j(W_\delta) = B(0, \delta)$ is the open ball of center 0 and radius δ in \mathbb{C}^n . Thus, by Theorem 3.2 in [10], there is a local integral solution operator T^s solves the $\overline{\partial}$ -equation for $\overline{\partial}$ -closed (r, s)-forms f with L^p -coefficients on strictly pseudoconcave domain $G \Subset \mathbb{C}^n$. The resulting solution operator T^s is then pulled back locally to an open set D_{ζ_0} with $W_{\delta/2} \cap D \subset D_{\zeta_0} \subset W_\delta \cap D$. If $f \in L^p_{r,s}(D, E)$, $0 \leqslant r \leqslant n$, $1 \leqslant s \leqslant n - 2$, on applying Theorem 3.2 of [10] to each f^{μ} , $\mu = 1, \ldots, N$, and writing $T^s f = \sum_{\mu=1}^N (T^s f)^{\mu} \omega_{\mu}$, we then conclude the following local result.

Theorem 3.1. Under the above assumptions, for every $\bar{\partial}$ -closed form $f \in L^1_{r,s}(D_{\xi_0}, E)$, $0 \leq r \leq n, 1 \leq s \leq n-2$, there exists a form $u = T^s f \in L^1_{r,s-1}(D_{\zeta_0}, E)$ such that $\bar{\partial} u = f$. If f is \mathcal{C}^{∞} , then u is \mathcal{C}^{∞} . Moreover, if $f \in L^p_{r,s}(D_{\zeta_0}, E)$, $1 \leq p \leq \infty$, then there exists a constant K = K(N, s) > 0 such that:

$$\|u\|_{L^{p}_{r,s-1}(D_{\zeta_{0}},E)} \leq K \|f\|_{L^{p}_{r,s}(D_{\zeta_{0}},E)}.$$
(3.1)

When s = n - 1, if we assume that the restriction of f to ∂D_{ζ_0} satisfies:

$$\int_{\partial D_{\zeta_0}} f \wedge \phi = 0 \quad \text{for every } \phi \in L_{n-r,0}^{p'} \left(D_{\zeta_0}, E^{\star} \right) \cap \operatorname{Ker}(\bar{\partial}),$$

then the same statement and (3.1) hold for all $1 \leq p < \infty$.

Furthermore, if $f \in L^{\infty}_{r,s}(D_{\zeta_0}, E)$, $0 \leq r \leq n$, $1 \leq s \leq n-2$, then u satisfies the $\frac{1}{2}$ -Hölder estimate

$$\| u(z) - u(z') \| \leq K |z - z'|^{\frac{1}{2}} \| f \|_{L^{\infty}_{r,\varsigma}(D_{\zeta_0},E)}, \quad (z,z') \in D_{\zeta_0} \times D_{\zeta_0}.$$

Theorem 3.1 yields the following extension lemma which enables us to complete the proof of Theorem 1.2.

Lemma 3.2. Let X, E, and D be given as in Theorem 1.2, then there exists another slightly larger C^3 strictly pseudoconcave domain $\widehat{D} \in X$ such that $\overline{D} \in \widehat{D}$ and for every $\overline{\partial}$ -closed $f \in L^1_{r,s}(D, E)$, $0 \leq r \leq n, 1 \leq s \leq n-2$, there exist two bounded linear operators L_1 , L_2 , a form $\widehat{f} = L_1 f \in L^1_{r,s}(\widehat{D}, E)$ and a form $\chi = L_2 f \in L^1_{r,s-1}(D, E)$ such that:

(i) $\overline{\partial} \widehat{f} = 0$ in \widehat{D} . (ii) $\widehat{f} = f - \overline{\partial} \chi$ in D. (iii) If f is in $L^p_{r,s}(D, E)$, then \widehat{f} is in $L^p_{r,s}(\widehat{D}, E)$ and χ is in $L^p_{r,s-1}(D, E)$ with the estimates:

 $\|\widehat{f}\|_{L^{p}_{rs}(\widehat{D},E)} \leqslant K \|f\|_{L^{p}_{rs}(D,E)}, \quad 1 \leqslant p \leqslant \infty,$ $\|\chi\|_{L^p_{r,s-1}(D,E)} \leqslant K \|f\|_{L^p_{r,s}(D,E)}, \quad 1 \leqslant p \leqslant \infty.$

For s = n - 1, if we assume that the restriction of f to ∂D_2 satisfies:

$$\int_{\partial D_2} f \wedge \phi = 0 \quad \text{for every } \phi \in L^{p'}_{n-r,0}(D_2, E^*) \cap \operatorname{Ker}(\bar{\partial})$$

then the same statements (i), (ii), and (iii) hold for all $1 \leqslant p < \infty$. If $f \in L^{\infty}_{r,s}(D, E)$, $0 \leq r \leq n$, $1 \leq s \leq n-2$, then χ satisfies the $\frac{1}{2}$ -Hölder estimate:

$$\left\|\chi(z)-\chi(z')\right\| \leqslant K \left|z-z'\right|^{\frac{1}{2}} \|f\|_{L^{\infty}_{r,s}(D,E)}, \quad (z,z') \in D \times D$$

the constant K is independent of f, p and small C^3 perturbation of D. If f is C^{∞} , then \hat{f} and χ are also C^{∞} .

End proof of Theorem 1.2. Let \hat{D} , \hat{f} and χ be as in Lemma 3.2. According to Theorem 6.6 of Henkin and Leiterer [6], there exists a strictly pseudoconcave domain D' with smooth boundary such that:

$$D \Subset D' \Subset \widehat{D}.$$

The solvability with L^2 -estimates for $\bar{\partial} \chi = \hat{f}$ on D' follows from the following L^2 -existence theorem for $\bar{\partial}$ which follows as in Hörmander [7] (see also [1]).

Theorem 3.3. Let X, D, and E be given as above. Then, for every $\bar{\partial}$ -closed form f in $L^2_{r,s}(D, E)$, $0 \le r \le n, q \le s \le n-2$, there exist a form χ in $L^2_{r,s-1}(D, E)$ and a constant C > 0 such that $\bar{\partial}\chi = f$ in D and $\|\chi\|_{L^2_{r,s-1}(D,E)} \leq C \|f\|_{L^2_{r,s}(D,E)}$.

When s = n - 1, if f is in $L^2_{r,n-1}(D, E)$ and its restriction to ∂D_2 satisfies $\int_{\partial D_2} f \wedge \phi = 0$ for every ϕ in $L^2_{n-r,0}(D_2, E^*) \cap \text{Ker}(\bar{\partial})$, then there exist a form χ in $L^2_{r,n-2}(D, E)$ and a constant C > 0 such that $\bar{\partial}\chi = f$ in D and $\|\chi\|_{L^2_{r,n-2}(D,E)} \leq C \|f\|_{L^2_{r,n-1}(D,E)}$.

Finally, the interior regularity properties for solutions of the $\bar{\partial}$ -equation and Lemma 3.2 imply Theorem 1.2 with L^p -estimates for the intermediate cases $2 \le p \le \infty$. The estimates for $1 \le p < 2$ follow from the proof of Theorem 1.2.2 in [8]. This completes the proof of Theorem 1.2. \Box

References

- O. Abdelkader, S. Khidr, Solutions to
 ³
 -equations on strongly pseudo-convex domains with L^p-estimates, Electron. J. Differ. Equ. 73 (2004) 1–9, http://ejde.math.txstate.edu, http://ejde.math.unt.edu, or ftp://ejde.math.txstate.edu.
- [2] O. Abdelkader, S. Khidr, L^p -estimates for solutions of $\bar{\partial}$ -equation in strongly q-convex domains, Math. Slovaca 54 (2004) 337–348.
- [3] H.P. Boas, E.J. Straube, Equivalence of regularity for the Bergman projection and the $\bar{\partial}$ -Neumann operator, Manuscr. Math. 67 (1990) 25–33.
- [4] J.-P. Demailly, Complex Analytic and Differential Geometry, http://www-fourier.ujf-grenoble.fr/~demailly/books.html.
- [5] G.B. Folland, J.J. Kohn, The Neumann Problem for the Cauchy–Riemann Complex, Annals of Mathematics Studies, vol. 75, Princeton University Press, University of Tokyo Press, Princeton, NJ, Tokyo, 1972.
- [6] G.M. Henkin, J. Leiterer, Andreoutti-Grauert Theory by Integral Formulas, Progress in Mathematics, vol. 74, Birkhäuser-Verlag, Boston, 1988.
- [7] L. Hörmander, L^2 -estimates and existence theorems for the $\bar{\partial}$ -operator, Acta Math. 113 (1965) 89–152.
- [8] N. Kerzman, Hölder and L^p -estimates for solutions of $\partial u = f$ in strongly pseudo-convex domain, Commun. Pure Appl. Math. 24 (1971) 301–380.
- [9] S. Khidr, Solving $\bar{\partial}$ with L^p -estimates on *q*-convex intersections in complex manifold, Complex Var. Elliptic Equ. 53 (2008) 253–263.
- [10] S. Khidr, O. Abdelkader, The $\bar{\partial}$ -problem on an annulus between two strictly *q*-convex domains with smooth boundaries, Complex Anal. Oper. Theory (2013), in press.
- [11] J.J. Kohn, Global regularity for $\bar{\partial}$ on weakly pseudoconvex manifolds, Trans. Amer. Math. Soc. 181 (1973) 273–292.
- [12] J.J. Kohn, Methods of partial differential equations in complex analysis, Proc. Symp. Pure Math. 30 (Part I) (1977) 215-237.
- [13] X.-D. Li, L^p -estimates and existence theorems for the $\bar{\partial}$ -operator on complete Kähler manifolds, Adv. Math. 224 (2010) 620–647.
- [14] W. McLean, Strongly Elliptic Systems and Boundary Integral Equations, Cambridge University Press, 2000.
- [15] M.-C. Shaw, Global solvability and regularity for a on an annulus between two weakly pseudoconvex domains, Trans. Amer. Math. Soc. 291 (1985) 255–267.
- [16] M.-C. Shaw, The closed range property for \u00fc on domains with pseudoconcave boundary, in: Complex Analysis, in: Trends in Mathematics, Birkh\u00e4user, Basel AG, 2010, pp. 307–320.
- [17] E.J. Straube, Lectures on the L²-Sobolev Theory of the ∂-Neumann Problem, ESI Lectures in Mathematics and Physics, vol. 7, European Mathematical Society (EMS), Zürich, 2010.
- [18] K. Takegoshi, Global regularity and spectra of Laplace-Beltrami operators on pseudoconvex domains, Publ. Res. Inst. Math. Sci. Kyoto Univ. 19 (1983) 275-304.