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In a recent article, C. Bardos et al. constructed weak solutions of the three-dimensional
incompressible Euler equations which emerge from two-dimensional initial data yet
become fully three-dimensional at positive times. They asked whether such symmetry-
breaking solutions could also be constructed under the additional condition that they
should have non-increasing energy. In this note, we give a positive answer to this question
and show that such a construction is possible for a large class of initial data. We use
convex integration techniques as developed by De Lellis and Székelyhidi.

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Récemment, C. Bardos et al. ont construit des solutions faibles de l’équation d’Euler
incompressible en dimension trois qui sont vraiment tridimensionnelles aux temps positifs,
bien qu’elles émergent d’une donnée initiale bidimensionnelle. Les auteurs se sont
demandé si une telle construction était possible sous la condition additionnelle que les
solutions aient une énergie non croissante. Dans cette note, on résout cette question en
montrant qu’une telle construction est en fait possible pour une grande famille de données
initiales. On utilise la méthode d’intégration convexe de De Lellis et Székelyhidi.

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

In their recent paper [2], C. Bardos et al. show, among other results, that there exist weak solutions of the unforced
three-dimensional incompressible Euler equations that have two-dimensional initial data, but spontaneously become fully
three-dimensional for positive times. They refer to this effect as an instance of “inviscid symmetry breaking” and show that
there is no “viscous symmetry breaking”, i.e. a Leray–Hopf solution of the Navier–Stokes equations with two-dimensional
initial data remains two-dimensional for all time. Here, by a two-dimensional vectorfield v : R3 →R

3 we mean a vectorfield
of the form:

v(x1, x2, x3) = (
v1(x1, x2), v2(x1, x2),0

)
.

However, the symmetry-breaking solutions of [2] are not dissipative in the sense of P.-L. Lions [4] because their kinetic
energy E(t) = 1

2

∫ |v(t, x)|2 dx increases, at least up to some positive time. The authors therefore ask whether there are
examples of dissipative weak solutions of the Euler equations which exhibit inviscid symmetry breaking. In fact, such an
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example is given in [5] for the case of a flat vortex sheet. The aim of this note is to show more generally that the set of
initial data for which such dissipative symmetry-breaking occurs is dense in the set of two-dimensional initial data with
respect to the topology of L2. Our proof relies on the convex integration approach of De Lellis and Székelyhidi [3].

We here restrict ourselves to the case of periodic boundary conditions and denote by T
d the d-dimensional torus. By a

weak solution of the Euler equations on T
d we mean a solution in the sense of distributions as defined e.g. in [7], and a

dissipative weak solution is a weak solution whose energy satisfies E(t)� E(0) for all times t . It is known [3] that dissipative
weak solutions on T

d are also dissipative solutions in the sense of Lions [4] (see Section 4.4 therein), hence the terminology.
If f is a measurable function on T

3 such that for almost every x1, x2,a,b ∈ T we have f (x1, x2,a) = f (x1, x2,b), then we
say that f is essentially independent of x3 (or briefly ei-x3), cf. Definition 4.1 in [2]. Finally, C([0,∞); H w(T3)) denotes the
space of continuous maps from [0,∞) into the space H(T3) of solenoidal vectorfields equipped with the weak L2 topology
(cf. again [7]). Our result can then be formulated as follows:

Theorem 1. Let v0 = (v1
0, v2

0) ∈ H(T2), and let ε > 0. Then there exist infinitely many dissipative weak solutions v = v(t, x1, x2, x3) ∈
C([0,∞); H w(T3)) of the incompressible Euler equations such that

∥∥v(t = 0) − (v0,0)
∥∥

L2(T3)
� ε,

v(t = 0) · e3 = 0, and v(t = 0) is ei-x3 , but v is not ei-x3 for t > 0.

2. Proof of Theorem 1

Since C∞(T2) is dense in L2(T2), we may assume without loss of generality that v0 is smooth. Let ṽ = ṽ(t, x1, x2) be the
unique solution of the two-dimensional Euler equations in T

2 with initial velocity v0. On defining the 2 × 2-matrix field:

ũ = ṽ ⊗ ṽ − |ṽ|2
2

I2,

where I2 denotes the 2 × 2-identity matrix, we obtain a smooth, space-periodic pressure q̃ such that the triplet (ṽ, ũ, q̃)

satisfies the linear system (1) from Theorem 2 in [7]:

∂t ṽ + div ũ + ∇q̃ = 0,

div ṽ = 0. (1)

In [3], the generalised energy density e is defined by

e(v, u) := d

2
λmax(v ⊗ v − u)

for a d-dimensional vector v and a symmetric trace-free d × d-matrix u, where λmax denotes the largest eigenvalue. We
have in our situation that:

e
(

ṽ(t, x), ũ(t, x)
) = |ṽ(t, x)|2

2
.

Now, for some η > 0, choose a function ē0 ∈ C((0,∞) ×T
2) ∩ Cb([0,∞); L1(T2)) with:

|ṽ(t, x)|2
2

< ē0(t, x) � |ṽ(t, x)|2
2

+ η for all x, t,

for instance by setting:

ē0(t, x) = |ṽ(t, x)|2
2

+ η

1 + t
. (2)

The following proposition follows easily from Proposition 22 in [6], which itself is an adaptation of Proposition 5 in [3]
(we omit details):

Proposition 2. If in (2) η > 0 is chosen sufficiently small, then there exists a triplet (v ′, u′,q′) solving (1) in (0,∞) × T
2 with the

following properties:

(
v ′, u′,q′) ∈ C∞(

(0,∞) ×T
2), v ′ ∈ C

([0,∞); H w
(
T

2)),
u′ takes values in the space of symmetric trace-free matrices,
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e
(

v ′(t, x), u′(t, x)
)
< ē0(t, x) for all t > 0 and x ∈ T

2,

1

2

∣∣v ′(0, x)
∣∣2 = ē0(0, x) for a.e. x ∈ T

2, (3)

and

∥∥v ′(t = 0) − ṽ(t = 0)
∥∥

L2(T2)
� ε. (4)

With this proposition at hand, we define the three-dimensional triplet (v̄, ū, q̄) by v̄ = (v ′,0),

ū =
⎛
⎜⎝

u′
11 + 1

3 e(v ′, u′) u′
12 0

u′
21 u′

22 + 1
3 e(v ′, u′) 0

0 0 − 2
3 e(v ′, u′)

⎞
⎟⎠

and q̄ = q′ + 1
3 e(v ′, u′). An elementary calculation yields that (v̄, ū, q̄) is a solution of (1) which is smooth for t > 0 and

such that v̄ ∈ C([0,∞); H w(T3)), ū is symmetric and trace-free, and:

e
(

v̄(t, x), ū(t, x)
) = e

(
v ′(t, x), u′(t, x)

)
< ē0(t, x) for all t > 0 and x ∈ T

3. (5)

(Note that we abused notation in denoting by e both the two-dimensional and the three-dimensional generalised energy
density.) Moreover, v̄(t = 0) is ei-x3 with:

1

2

∣∣v̄(0, x)
∣∣2 = ē0(0, x1, x2) for a.e. x ∈ T

3.

Let now

ē(t, x) = ē(t, x1, x2, x3) = ē0(t, x1, x2) + η
t

1 + t
sin2(2πx3). (6)

Then, by (5),

e
(

v̄(t, x), ū(t, x)
)
< ē(t, x) for all t > 0 and x ∈ T

3,

so that Theorem 2 in [7] yields infinitely many weak solutions v ∈ C([0,∞); H w(T3)) of the incompressible Euler equations
with initial data v̄(0, ·) and energy density:

|v(t, x)|2
2

= ē(t, x) for every t ∈ (0,∞) and a.e. x ∈ T
3. (7)

Hence v is ei-x3 at time zero, but not for positive times because its energy density is x3-dependent. Moreover, in view of (4)
we have:

∥∥v(t = 0) − v0
∥∥

L2(T3)
= ∥∥v ′(t = 0) − ṽ(t = 0)

∥∥
L2(T2)

� ε,

and finally, owing to (7), (6), (2), and (3), for every t > 0 we have:
∫

T3

∣∣v(t, x)
∣∣2

dx =
∫

T3

2ē(t, x)dx

�
∫

T3

2ē0(t, x)dx + 2ηt

1 + t

=
∫

T2

∣∣ṽ(t, x)
∣∣2

dx + 2η

=
∫

T2

2ē0(0, x)dx =
∫

T3

∣∣v(0, x)
∣∣2

dx,

which completes the proof. �



910 E. Wiedemann / C. R. Acad. Sci. Paris, Ser. I 351 (2013) 907–910
3. Concluding remarks

As a consequence of Theorem 1, we obtain a plethora of dissipative weak solutions that do not arise as viscosity limits
with the same initial data:

Corollary 3. For an L2-dense subset of two-dimensional initial data, there exist dissipative weak solutions of the 3-D incompressible
Euler equations which are not a vanishing viscosity limit of Leray–Hopf solutions of Navier–Stokes with the same initial data.

To see this, combine Theorem 1 with Theorem 4.4 in [2]. Moreover, the observation that viscosity limits do not break
the symmetry while some dissipative weak solutions do can be viewed as further evidence in favour of the viscosity limit
as a suitable selection principle for weak solutions of the Euler equations (cf. [1]).
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