
C. R. Acad. Sci. Paris, Ser. I 351 (2013) 915–920
Contents lists available at ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

Geometry/Differential topology

The projective plane, J -holomorphic curves and Desargues’
theorem

Plan projectif, courbes J -holomorphes et théorème de Desargues

Siddhartha Gadgil

Department of Mathematics, Indian Institute of Science, Bangalore 560012, India

a r t i c l e i n f o a b s t r a c t

Article history:
Received 1 October 2010
Accepted after revision 21 October 2013
Available online 8 November 2013

Presented by Étienne Ghys

By a theorem of Gromov, for an almost complex structure J on CP 2 tamed by the standard
symplectic structure, the J -holomorphic curves representing the positive generator of
homology form a projective plane. We show that this satisfies the Theorem of Desargues if
and only if J is isomorphic to the standard complex structure. This answers a question of
Ghys.

© 2013 Published by Elsevier Masson SAS on behalf of Académie des sciences.

r é s u m é

D’après un théorème dû à Gromov, pour toute structure presque complexe J sur CP 2 qui
est compatible avec la structure symplectique standard, les courbes J -holomorphes dans
la classe du générateur positif de H2(CP 2) correspondent à la collection des droites d’un
plan projectif. Nous démontrons que ce plan projectif est arguésien si et seulement si J
est isomorphe à la structure complexe standard, répondant ainsi à une question posée par
Ghys.

© 2013 Published by Elsevier Masson SAS on behalf of Académie des sciences.

1. Introduction

Consider an almost complex structure J on CP 2, which is tamed by the standard symplectic form ω, i.e., such that
ω(v, J v) > 0 for all non-zero tangent vectors v . Then, by a theorem of Gromov [2], we can associate a projective plane
(we recall definitions below) with J , with points the points of CP 2 and lines J -holomorphic curves Σ such that the
corresponding homology class [Σ] ∈ H2(CP 2,Z) is the positive generator (i.e., the generator on which the integral of ω
is positive). Ghys asked whether the Theorem of Desargues for such a projective plane implies that J is integrable, or
equivalently standard. We show that this is indeed the case.

Theorem 1.1. Suppose that the geometry associated with J satisfies the theorem of Desargues; then, there is a diffeomorphism from
CP 2 to itself that maps the standard complex structure to J .

Our proof is a simple extension of classical results, for which we refer to Emil Artin’s Geometric Algebra [1], where it is
shown that such a projective plane is the projective plane over a division ring k. We refine the arguments to show that in
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our case k is a topological division ring homeomorphic to C. By a theorem of Pontryagin, it follows that k = C. We deduce
the main result.

2. Affine and projective planes

An affine plane consists of collections of points and lines, with lines being sets of points. We assume that these satisfy
certain axioms.

Axiom (Axiom 1). Through any pair of points P and Q there is a unique line P Q .

Hence, two distinct lines intersect in 0 or 1 points. We define lines to be parallel if they are disjoint or equal. Our second
axiom is the so-called parallel postulate.

Axiom (Axiom 2 (affine version)). Given a line l and a point P not on l, there is a unique line through P parallel to l.

As a consequence, we note that being parallel is an equivalence relation. Symmetry and reflexivity are obvious. Transi-
tivity is as below.

Proposition 2.1. Suppose l′ and l′′ are both parallel to l. Then l′ is parallel to l′′ .

Proof. Suppose not, then l′ and l′′ intersect in a point P . Assuming that l, l′ and l′′ are all distinct, the lines l′ and l′′
both pass through P parallel and are parallel to l, contradicting Axiom 2. The cases when two of the lines coincide are
elementary. �

We shall call an equivalence class under this relation a pencil of parallel lines. We shall call the pencil of parallel lines
containing a line l as the direction of l.

To ensure that our geometry is non-trivial, we also need another axiom.

Axiom (Axiom 3). There are three points A, B and C not contained in a single line.

The basic example of an affine geometry is the set of pairs of points over a division ring k, with lines the set of solutions
to non-degenerate linear equations over k.

We now turn to projective planes, which are completions of affine planes. These are also collections of points and lines
satisfying appropriate axioms.

An affine plane gives rise to a projective plane. Namely, we add to an affine plane, points corresponding to the pencils
of parallel lines. Each line l in the affine plane gives a line in the projective plane consisting of the points of l and the point
at infinity corresponding to the direction of l. We also add a single line at infinity consisting of the new points (i.e., not in
the affine plane).

The parallel postulate gets replaced by its projective counterpart.

Axiom (Axiom 2 (projective version)). Any pair of distinct lines intersect in a single point.

It is easy to see that Axioms 1 and 3 continue to hold for the projective plane corresponding to an affine plane. Con-
versely, given a projective plane satisfying Axioms 1 and 3 and the projective version of Axiom 2, we obtain an affine plane
by deleting a line (which we declare to be the line to be at infinity) and all the points on it.

We now recall the Theorem of Desargues. This holds in the standard affine plane over a division ring k, but not neces-
sarily in a general projective plane. We shall hence regard it as an additional axiom.

Axiom (Theorem of Desargues). Let O be a point in a projective plane, l1, l2 and l3 be distinct lines through O and Ai , Bi
be distinct points on li , for i = 1,2,3, none of which coincide with O . Then the points A1 A2 ∩ B1 B2, A1 A3 ∩ B1 B3 and
A2 A3 ∩ B2 B3 are colinear.

We say that a projective plane is Desarguesian if it satisfies the Theorem of Desargues.

3. Projective plane from J -holomorphic curves

Let J be an almost complex structure on CP 2 that is tamed by the standard symplectic structure, i.e., so that for every
tangent vector V ∈ T pCP 2, p ∈ CP 2, ω(V , J V ) > 0. Consider the set of J -holomorphic curves Σ in CP 2 such that [Σ]
generates H2(CP 2,Z). This will form the collection of lines in a projective plane. By a theorem of Gromov, this satisfies
Axiom 1 for a projective plane.
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Theorem 3.1 (Gromov). Given two points in CP 2 , there is a unique J -holomorphic curve Σ passing through P and Q so that [Σ] ∈
H2(CP 2,Z) is a generator.

We remark that ω evaluated on the class of Σ must be positive and Σ is topologically a sphere. Axiom 2 follows by the
following elementary (and standard) proposition.

Proposition 3.2. If Σ1 and Σ2 are distinct J -holomorphic curves homologous to the positive generator of H2(CP 2,Z). Then Σ1 ∩Σ2
is a single point and the intersection is transversal at this point.

Proof. The algebraic intersection number of Σ1 and Σ2 is 1. As the curves are J -holomorphic they intersect in a finite num-
ber of points, each with positive multiplicity. Hence, by the strong positivity of intersections for holomorphic curves, they
must intersect at exactly one point and this must have multiplicity one. In particular, the intersection point is transversal
(as it has multiplicity 1). �

Thus, Axiom 2 holds. Axiom 3 follows as each line is a sphere and hence cannot be all of CP 2. We consider henceforth
such a projective plane.

4. Basic continuity results

We next show that the basic geometric constructions we need are all continuous. We consider the topology on the space
of lines given by the Hausdorff distance. Note that the Hausdorff topology coincides with the topology defined by Gromov
in this context – namely, we view lines non-uniquely as holomorphic maps from CP 1 and consider the quotient of the
C0-topology on such maps. Our first lemma follows from standard constructions of moduli spaces of holomorphic maps.

Lemma 4.1. The line P Q through distinct points P and Q varies continuously with P and Q .

Lemma 4.2. If l1 and 12 are distinct lines, then the point l1 ∩ l2 varies continuously as a function of l1 and l2 .

Proof. Observe that if U is an open neighbourhood of l1 and l2, then by compactness the distance between l1 \ U and l2 \ U
is positive. Hence two lines l′1 and l′2, sufficiently close to l1 and l2, respectively, cannot intersect outside U . Hence their
unique intersection point must lie in U . The result follows. �

Next, choose and fix a line, which we denote l∞ , and consider the affine plane obtained by deleting this line.

Lemma 4.3. Given a line l and a point P not on l, the line l′ through P parallel to l varies continuously with l and P .

Proof. The line l′ is the unique line through P and the point l ∩ l∞ . Thus continuity follows from the previous lemmas. �
5. Dilatations

We henceforth consider an affine plane obtained from the projective plane associated with an almost complex structure
J as above.

Definition 5.1. A dilatation of an affine plane is a map ϕ of points of the plane so that for distinct points P and Q , the point
ϕ(Q ) lies on the line through ϕ(P ) parallel to the line P Q .

Dilatations are determined by the images of two distinct points P and Q . We shall refine this to show that, in our case,
dilatations are continuous functions depending continuously on the images of the points P and Q .

Namely, let R , P ′ and Q ′ be points in the affine plane. Let {Pn}, {Q n}, {Rn}, {P ′
n} and {Q ′

n} be sequences of points
converging to P , Q , R , P ′ and Q ′ respectively.

Lemma 5.2. A dilatation ϕ mapping P to P ′ and Q to Q ′ , if it exists, is unique. Further, ϕ is continuous, and if {ϕn} is a sequence of
dilatations such that ϕn(Pn) = P ′

n and ϕn(Q n) = Q ′
n, then ϕn(Rn) converges to ϕ(R).

Proof. Consider a sequence of points Rn converging to R . We shall show that ϕn(Rn) converges to ϕ(R). All statements
follow from this.

First, assume that R is not on the line P Q . Without loss of generality, we can then assume that Rn is not on the line
Pn Q n for all n (as this will be true for n sufficiently large). Observe that ϕ(R) lies on both the line through P ′ = ϕ(P )

that is parallel to the line P R and the line through Q ′ = ϕ(Q ) that is parallel to the line Q R , and hence is the intersection
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point of these lines. Similarly, ϕn(Rn) lies on both the line through P ′
n = ϕn(Pn) that is parallel to the line Pn Rn and the line

through Q ′
n = ϕn(Q n) that is parallel to the line Q n Rn , and hence is the intersection point of these lines. By the lemmas of

Section 4, we conclude that ϕn(Rn) converges to ϕ(R).
If R is on the line P Q , we pick a point S not on the line P Q and deduce as above that ϕn(S) converges to ϕ(S). We

then apply the same argument with S in place of Q . �
In particular, the only dilatation that fixes at least two points is the identity. Every other dilatation has either no fixed

points or a single fixed point. We call a dilatation with no fixed points a translation. The identity is also considered a
translation.

6. The division ring k

We now recall the construction of the division ring k in the presence of Desargues’ theorem. As the results in this section
are classical (we follow [1]), we omit proofs. We shall see a more concrete description of k, including its topology, in the
next section (but the correctness of that description depends on the results of this section).

We first consider translations.

Lemma 6.1. If τ �= id is a translation, then lines through P and τ (P ), for P in the affine plane, form a pencil of parallel lines.

This pencil is called the trace of a translation. Henceforth assume that the Theorem of Desargues holds in the affine
plane we have constructed.

Lemma 6.2. Given a pair of points O and P , there is a unique translation τ mapping O to P .

Lemma 6.3. The set of translations forms an Abelian group T under composition.

A homomorphism Φ of T (i.e., from T to itself) is said to be trace-preserving if Φ(τ) has the same trace as τ for all
translations τ . We also allow Φ(τ) to be the identity.

The trace preserving homomorphisms form a ring k given by, for Φ1,Φ2 ∈ k,

(Φ1 + Φ2)(τ ) := Φ1(τ ) ◦ Φ2(τ )

and

(Φ1 · Φ2)(τ ) := Φ1
(
Φ2(τ )

)
.

Dilatations give trace-preserving homomorphisms of the Abelian group T by conjugation by the following lemma.

Lemma 6.4. Suppose ϕ is a dilatation, then τ �→ ϕ ◦ τ ◦ ϕ−1 is a trace-preserving homomorphism of T .

Fix a point O in the affine plane, a line l through O and another point P on l. Assuming the theorem of Desargues, we
can describe dilatations that fix O .

Lemma 6.5. Any dilatation fixing O fixes all lines passing through O . Further, if Q is a point on l, then there is a unique dilatation
fixing O and mapping P to Q .

Thus, dilatations fixing O can be identified with the affine line l. The construction of a division ring k in [1], so that the
given affine plane is the standard affine plane over k, can be summarised as follows.

Consider the set k of dilatations fixing O . This becomes a ring as above by regarding dilatations as trace preserving
homomorphisms of T .

Theorem 6.6. (See [1].) The ring k of dilatations fixing O is a division ring. The given affine plane is isomorphic to the standard affine
plane over k.

Thus, as a set k is an affine line, which can be identified with C in our case. We next see that k is a topological division
ring homeomorphic to k.
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7. The topological division ring

We first consider the group T of translations, for which we use the additive notation (for composition). Fix an origin O .
Then T is in bijective correspondence with the set of points is the affine plane, with a point P corresponding to the unique
translation τP mapping O to P . Observe that τ−P = τ−1

P .
We see that translations form a topological group under this identification.

Lemma 7.1. The group of translations is a topological group with respect to the topology induced from the affine plane by the above
identification.

Proof. First consider a pair of points P and Q such that P �= O �= Q and O P �= O Q . We shall see that P + Q is given by
the parallelogram law.

Note that P + Q = τP ◦ τQ (O ) = τP (Q ). As τP is a dilatation, if follows that P + Q lies on the line through P = τP (O )

parallel to O Q . Further, by Lemma 6.1, τP (Q ) lies on the line through Q parallel to O P . Hence P + Q is the intersection
of these two lines.

We see similarly that P − Q = P + (−Q ) is given by a parallelogram law, namely it is the intersection of the line through
P parallel to O Q and the line through O parallel to P Q . By the lemmas of Section 4, it follows that both P + Q and P − Q
vary continuously with P and Q provided O P �= O Q . For Q contained in the line O P , we pick R not on O P = O Q and
use P + Q = (P + R) + (Q − R), which expresses addition as a composition of operations, each of which is continuous by
the above.

Similarly, for a point P , we pick R not on O P and use −P = R − (R + P ) to observe that the additive inverse is
continuous. �

We now consider the division ring k. Pick a point 1. The division ring can be identified with the line l through O and
1 by identifying a point P on this line with the dilatation σP fixing O and mapping 1 to P . We shall show that k is a
topological division ring with respect to the topology of l, using this identification.

Let τ1 be the translation mapping O to 1. The dilatation σP acts on T by the trace preserving homomorphism ΦP : τ �→
σP ◦ τ ◦ σ−1

P . In particular, observe that if τ1 �→ τ , then τ (O ) = σP (τ1(σ
−1
P (O ))) = σP (1) = P . Thus, we have ΦP (τ1) = τP ,

i.e.,

P = ΦP (τ1)(O ).

Lemma 7.2. The division ring k is a topological division ring with respect to the topology induced by the identification of a point P in l
with the dilatation σP .

Proof. First, we consider the additive group of k, with the points identified with the affine line as above. Temporarily denote
the addition on l from this identification by P ⊕ Q . By the above, this is given by:

P ⊕ Q = (ΦP + ΦQ )(τ1)(O ) = ΦP (τ1)(O ) + ΦQ (τ1)(O ) = P + Q .

Thus, addition on k identified with the affine line l is the restriction of the addition of the group of translations identified
with the affine plane. By Lemma 7.1, addition and the additive inverse are continuous operations.

We now turn to multiplication, which we recall corresponds to composition of the trace preserving homomorphisms.
Thus, we have:

P · Q = ΦP ◦ ΦQ (τ1)(O ) = σP
(
σQ (1)

) = σP (Q ).

By Lemma 5.2, P · Q = γP (Q ) is continuous as a function of both P and Q .
Finally, for P �= O , the point P−1 corresponds to the dilatation σP−1 mapping O to itself and P to 1. Thus, P−1 = σP−1 (1)

is continuous as a function of P by Lemma 5.2. �
8. Proof of the main theorem

We now sketch the rest of the proof of Theorem 1.1.
By the above, k is a division ring homeomorphic to C. By a theorem of Pontryagin [3], any connected, locally compact,

division ring is one of R, C and H. It follows that k = C. Thus, there is a homeomorphism ϕ from CP 2 to itself which takes
J -holomorphic curves to lines (with respect to the standard structure). We shall show that ϕ is smooth.

By results of Gromov, the moduli space M of J -holomorphic curves is a smooth manifold diffeomorphic to CP 2. Further,
the function associating with a pair of distinct points in CP 2 the line through these points is smooth, as is the function
associating with a pair of distinct lines in CP 2 (i.e., a pair of distinct points in M) their intersection.

Pick an arbitrary J -holomorphic curve C representing the generator of H2(CP 2) and let C ′ = ϕ(C). As C ′ is a line,
without loss of generality, we can assume C \ C ′ = C

2. We shall show that the restriction of ϕ is a diffeomorphism from the
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complement A of C to the complement of C ′ . Note that, as above, A is an affine plane over C with addition and co-ordinates
defined as above.

Now, fix an origin O in A. Recall, as in Section 4, that if P and Q are points in A so that O , P and Q are not collinear,
then the sum P + Q and the difference P − Q are defined in terms of the operations of intersecting J -holomorphic curves
and of associating with pairs of points the curve passing through them. It follows, again as in Section 4, that the field
operations and the vector space operations on A are smooth. As ϕ is, by construction, a linear isomorphism between A as
a vector space over C defined in terms of these operations and C

2, it follows that ϕ is smooth.
As C is arbitrary and every point is in the complement of some a curve, it follows that ϕ : CP 2 → CP 2 is a diffeomor-

phism. Thus, we obtain a diffeomorphism from CP 2 with the given complex structure J to CP 2 with the standard complex
structure Jstd = i, so that lines are mapped to lines.

In particular, for p ∈ CP 2, the almost complex structure J gives a linear map from V = T pCP 2 to itself satisfying
J 2 = −I . We regard V as a complex vector space using the standard complex structure. The following lemma is elementary.

Lemma 8.1. Let J : V → V be an R-linear map of a 2-dimensional complex vector space so that J 2 = −I . Assume that, for all v ∈ V ,
the vectors v and J v are contained in a complex line. Then J = ±i.

As complex lines with respect to J are complex lines with respect to the standard complex structure, the above lemma
applies at each point to show that J = ± Jstd. In the first case, it follows that this identification is a biholomorphic map. In
the second case, we compose with the map [z1 : z2 : z3] �→ [z̄1 : z̄2 : z̄3] to obtain a biholomorphic map.

Remark 8.2. An alternative approach to the main result would be to observe that Desargues’ theorem implies the exis-
tence of symmetries. As almost complex structures are integrable up to first order, these symmetries in turn must imply
integrability.
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