Group theory/Algebraic geometry

The Lie algebra of type G_{2} is rational over its quotient by the adjoint action ${ }^{\hat{*}}$

Rationalité de l'algèbre de Lie de type G_{2} sur son quotient par l'action adjointe

Dave Anderson ${ }^{\text {a }}$, Mathieu Florence ${ }^{\text {b }}$, Zinovy Reichstein ${ }^{\text {c }}$
${ }^{\text {a }}$ Instituto Nacional de Matemática Pura e Aplicada, Rio de Janeiro, RJ 22460-320, Brazil
${ }^{\text {b }}$ Institut de mathématiques de Jussieu, Université Paris-6, 4, place Jussieu, 75005 Paris, France
${ }^{\text {c }}$ Department of Mathematics, University of British Columbia, BC V6T 1Z2, Canada

ARTICLE INFO

Article history:

Received 27 August 2013
Accepted 24 October 2013
Presented by Jean-Pierre Serre

Abstract

Let G be a split simple group of type G_{2} over a field k, and let \mathfrak{g} be its Lie algebra. Answering a question of J.-L. Colliot-Thélène, B. Kunyavskiī, V.L. Popov, and Z. Reichstein, we show that the function field $k(\mathfrak{g})$ is generated by algebraically independent elements over the field of adjoint invariants $k(\mathfrak{g})^{G}$.

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

R É S U M É

Soit G un groupe algébrique simple et déployé de type G_{2} sur un corps k. Soit \mathfrak{g} son algèbre de Lie. On démontre que le corps des fonctions $k(\mathfrak{g})$ est transcendant pur sur le corps $k(\mathfrak{g})^{G}$ des invariants adjoints. Ceci répond par l'affirmative à une question posée par J.-L. Colliot-Thélène, B. Kunyavskiĭ, V.L. Popov et Z. Reichstein.
© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let G be a split connected reductive group over a field k and let \mathfrak{g} be the Lie algebra of G. We will be interested in the following natural question:

Question 1. Is the function field $k(\mathfrak{g})$ purely transcendental over the field of invariants $k(\mathfrak{g})^{G}$ for the adjoint action of G on \mathfrak{g} ? That is, can $k(\mathfrak{g})$ be generated over $k(\mathfrak{g})^{G}$ by algebraically independent elements?

In [5], the authors reduce this question to the case where G is simple, and show that in the case of simple groups, the answer is affirmative for split groups of types A_{n} and C_{n}, and negative for all other types except possibly for G_{2}. The standing assumption in [5] is that $\operatorname{char}(k)=0$, but here we work in arbitrary characteristic.

The purpose of this note is to settle Question 1 for the remaining case $G=G_{2}$.

[^0]Theorem 2. Let k be an arbitrary field and G be the simple split k-group of type G_{2}. Then $k(\mathfrak{g})$ is purely transcendental over $k(\mathfrak{g})^{G}$.

Under the same hypothesis, and also assuming $\operatorname{char}(k)=0$, it follows from Theorem 2 and [5, Theorem 4.10] that the field extension $k(G) / k(G)^{G}$ is also purely transcendental, where G acts on itself by conjugation.

Apart from settling the last case left open in [5], we were motivated by the (still mysterious) connection between Question 1 and the Gelfand-Kirillov (GK) conjecture [9]. In this context, char $(k)=0$. A. Premet [11] recently showed that the GK conjecture fails for simple Lie algebras of any type other than A_{n}, C_{n} and G_{2}. His paper relies on the negative results of [5] and their characteristic p analogues ([11], see also [5, Theorem 6.3]). It is not known whether a positive answer to Question 1 for \mathfrak{g} implies the GK conjecture for \mathfrak{g}. The GK conjecture has been proved for algebras of type A_{n} (see [9]), but remains open for types C_{n} and G_{2}. While Theorem 2 does not settle the GK conjecture for type G_{2}, it puts the remaining two open cases-for algebras of type C_{n} and G_{2}-on equal footing vis-à-vis Question 1.

2. Twisting

Temporarily, let W be a linear algebraic group over a field k. (In the sequel, W will be the Weyl group of G; in particular, it will be finite and smooth.) We refer to [7, Section 3], [8, Section 2], or [5, Section 2] for details about the following facts.

Let X be a quasi-projective variety with a (right) W-action defined over k, and let ζ be a (left) W-torsor over k. The diagonal left action of W on $X \times_{\operatorname{Spec}(k)} \zeta$ (by $\left.g .(x, z)=\left(x g^{-1}, g z\right)\right)$ makes $X \times_{\operatorname{Spec}(k)} \zeta$ into the total space of a W-torsor $X \times \operatorname{Spec}(k) \zeta \rightarrow B$. The base space B of this torsor is usually called the twist of X by ζ. We denote it by ${ }^{\zeta} X$.

It is easy to see that if ζ is trivial then ${ }^{\zeta} X$ is k-isomorphic to X. Hence, ${ }^{\zeta} X$ is a k-form of X, i.e., X and ${ }^{\zeta} X$ become isomorphic over an algebraic closure of k.

The twisting construction is functorial in X : a W-equivariant morphism $X \rightarrow Y$ (or rational map $X \rightarrow Y$) induces a k-morphism ${ }^{\zeta} X \rightarrow{ }^{\zeta} Y$ (resp., rational map ${ }^{\zeta} X \rightarrow{ }^{\zeta} Y$).

3. The split group of type \boldsymbol{G}_{2}

We fix notation and briefly review the basic facts, referring to [13], [1], or [2] for more details. Over any field k, a simple split group G of type G_{2} has a faithful seven-dimensional representation V. Following [2, (3.11)], one can fix a basis f_{1}, \ldots, f_{7}, with dual basis X_{1}, \ldots, X_{7}, so that G preserves the nonsingular quadratic norm $N=X_{1} X_{7}+X_{2} X_{6}+X_{3} X_{5}+X_{4}^{2}$. (See [1, §6.1] for the case $\operatorname{char}(k)=2$. In this case V is not irreducible, since the subspace spanned by f_{4} is invariant; the quotient $V /\left(k \cdot f_{4}\right)$ is the minimal irreducible representation. However, irreducibility will not be necessary in our context.) The corresponding embedding $G \hookrightarrow \mathrm{GL}_{7}$ yields a split maximal torus and Borel subgroup $T \subset B \subset G$, by intersecting with diagonal and upper-triangular matrices. Explicitly, the maximal torus is:

$$
\begin{equation*}
T=\operatorname{diag}\left(t_{1}, t_{2}, t_{1} t_{2}^{-1}, 1, t_{1}^{-1} t_{2}, t_{2}^{-1}, t_{1}^{-1}\right) \tag{1}
\end{equation*}
$$

cf. [2, Lemma 3.13].
The Weyl group $W=N(T) / T$ is isomorphic to the dihedral group with 12 elements, and the surjection $N(T) \rightarrow W$ splits. The inclusion $G \hookrightarrow \mathrm{GL}_{7}$ thus gives rise to an inclusion $N(T)=T \rtimes W \hookrightarrow D \rtimes \mathrm{~S}_{7}$, where $D \subset \mathrm{GL}_{7}$ is the subgroup of diagonal matrices. On the level of the dual basis X_{1}, \ldots, X_{7}, we obtain an isomorphism $W \cong S_{3} \times S_{2}$ realized as follows: S_{3} permutes the three ordered pairs $\left(X_{1}, X_{7}\right),\left(X_{6}, X_{2}\right)$, and $\left(X_{5}, X_{3}\right)$, and S_{2} exchanges the two ordered triples $\left(X_{1}, X_{5}, X_{6}\right)$ and $\left(X_{7}, X_{3}, X_{2}\right)$. The variable X_{4} is fixed by W. For details, see [2, §A.3].

The subgroup $P \subset G$ stabilizing the isotropic line spanned by f_{1} is a maximal standard parabolic, and the corresponding homogeneous space $P \backslash G$ is isomorphic to the five-dimensional quadric $\mathcal{Q} \subset \mathbb{P}(V)$ defined by the vanishing of the norm, i.e., by the equation:

$$
\begin{equation*}
X_{1} X_{7}+X_{2} X_{6}+X_{3} X_{5}+X_{4}^{2}=0 \tag{2}
\end{equation*}
$$

Note that the quadric \mathcal{Q} is endowed with an action of T. An easy tangent space computation shows that P is smooth regardless of the characteristic of k.

Lemma 3. The group P is special, i.e., $H^{1}(l, P)=\{1\}$ for every field extension l / k. Moreover, P is rational, as a variety over k.
Proof. Since the split group of type G_{2} is defined over the prime field, we may replace k by the prime field for the purpose of proving this lemma, and in particular, we may assume k is perfect. We begin by briefly recalling a construction of Chevalley [4]. The isotropic line $E_{1} \subset V$ stabilized by P is spanned by f_{1}, and P also preserves an isotropic 3 -space E_{3} spanned by f_{1}, f_{2}, f_{3}; see, e.g., [2, §2.2]. There is a corresponding map $P \rightarrow \operatorname{GL}\left(E_{3} / E_{1}\right) \cong G L_{2}$, which is a split surjection thanks to the block matrix described in [10, p. 13] as the image of " B " in GL_{7}. The kernel is unipotent, and we have a split exact sequence corresponding to the Levi decomposition:

$$
\begin{equation*}
1 \rightarrow R_{u}(P) \rightarrow P \rightarrow \mathrm{GL}_{2} \rightarrow 1 \tag{3}
\end{equation*}
$$

Combining the exact sequence in cohomology induced by (3) with the fact that both $R_{u}(P)$ and GL_{2} are special (see [12, pp. 122 and 128]), shows that P is special.

Since P is isomorphic to $R_{u}(P) \times G L_{2}$ as a variety over k, and P is smooth, so is $R_{u}(P)$. A smooth connected unipotent group over a perfect field is rational [6, IV, $\S 2(3.10)$]; therefore $R_{u}(P)$ is k-rational, and so is P.

4. Proof of Theorem 2

Keep the notation of the previous section. By a W-model (of $k(\mathcal{Q})^{T}$), we mean a quasi-projective k-variety Y, endowed with a right action of W, together with a dominant W-equivariant k-rational map $\mathcal{Q} \rightarrow Y$ which, on the level of function fields, identifies $k(Y)$ with $k(\mathcal{Q})^{T}$. Such a map $\mathcal{Q} \rightarrow Y$ is called a (W-equivariant) rational quotient map. A W-model is unique up to a W-equivariant birational isomorphism; we will construct an explicit one below.

We reduce Theorem 2 to a statement about rationality of a twisted W-model, in two steps. The first holds for general split connected semisimple groups G.

Proposition 4. Let G be a split connected semisimple group over k, with split maximal k-torus T. Let $K=k(\mathfrak{t})^{W}, L=k(\mathfrak{t})$, and let ζ be the W-torsor corresponding to the field extension L / K. If the twisted variety ${ }^{\zeta}\left(G_{K} / T_{K}\right)$ is rational over K, then $k(\mathfrak{g})$ is purely transcendental over $k(\mathfrak{g})^{G}$.

Proof. Consider the ($G \times W$)-equivariant morphism:

$$
f: G / T \times \operatorname{spec}(k) \mathfrak{t} \rightarrow \mathfrak{g}
$$

given by $(\bar{a}, t) \mapsto \operatorname{Ad}(a) t$, where \mathfrak{t} is the Lie algebra of $T, \bar{a} \in G / T$ is the class of $a \in G$, modulo T. Here G acts on $G / T \times \mathfrak{t}$ by translations on the first factor (and trivially on \mathfrak{t}), and via the adjoint representation on \mathfrak{g}. The Weyl group W naturally acts on \mathfrak{t} and G / T (on the right), diagonally on $G / T \times \mathfrak{t}$, and trivially on \mathfrak{g}.

The image of f contains the semisimple locus in \mathfrak{g}, so f is dominant and induces an inclusion $f^{*}: k(\mathfrak{g}) \hookrightarrow k(G / T \times \mathfrak{t})$. Clearly $f^{*} k(\mathfrak{g}) \subset k(G / T \times \mathfrak{t})^{W}$. We will show that in fact:

$$
\begin{equation*}
f^{*} k(\mathfrak{g})=k(G / T \times \mathfrak{t})^{W} \tag{4}
\end{equation*}
$$

Write \bar{k} for an algebraic closure of k, and note that the preimage of a \bar{k}-point of \mathfrak{g} in general position is a single W-orbit in $(G / T \times \mathfrak{t})_{\bar{k}}$. To establish (4), it remains to check that f is smooth at a general point (g, x) of $G / T \times \mathfrak{t}$. (In particular, when $\operatorname{char}(k)=0$ nothing more is needed.) To carry out this calculation, we may assume without loss of generality that k is algebraically closed and (since f is G-equivariant) $g=1$. Since $\operatorname{dim}(G / T \times \mathfrak{t})=\operatorname{dim}(\mathfrak{g})$, it suffices to show that the differential:

$$
\mathrm{d} f: T_{(1, x)}(G / T \times \mathfrak{t}) \rightarrow T_{\chi}(\mathfrak{g})
$$

is surjective, for any regular semisimple element $x \in \mathfrak{t}$. Equivalently, we want to show that $[x, \mathfrak{g}]+\mathfrak{t}=\mathfrak{g}$. Since x is regular, we have $\operatorname{dim}([x, \mathfrak{g}])+\operatorname{dim} \mathfrak{t}=\operatorname{dim} \mathfrak{g}$. Thus it remains to show that $[x, \mathfrak{g}] \cap \mathfrak{t}=0$. To see this, suppose $[x, y] \in \mathfrak{t}$ for some $y \in \mathfrak{g}$. Since x is semisimple, we can write $y=\sum_{i=1}^{r} y_{\lambda_{i}}$, where y_{λ} is an eigenvector for ad (x) with eigenvalue λ, and $\lambda_{1}, \ldots, \lambda_{r}$ are distinct. Then $[x, y]=\sum_{i=1}^{r} \lambda_{i} y_{\lambda_{i}} \in \mathfrak{t}$ is an eigenvector for $\operatorname{ad}(x)$ with eigenvalue 0 . Remembering that eigenvectors of $\operatorname{ad}(x)$ with distinct eigenvalues are linearly independent, we conclude that $[x, y]=0$. This completes the proof of (4).

It is easy to see $k(G / T \times \mathfrak{t})^{G \times W}=k(\mathfrak{t})^{W}$. Summarizing, f^{*} induces a diagram:

where the top row is the G-equivariant isomorphism (4), and the bottom row is obtained from the top by taking G-invariants. Note that:

$$
k\left(G / T \times_{\operatorname{Spec}(k)} \mathfrak{t}\right) \simeq K\left((G / T)_{K} \times \operatorname{Spec}(K) \operatorname{Spec} L\right)
$$

where \simeq denotes a G-equivariant isomorphism of fields. (Recall that G acts trivially on t and hence also on L and K.) Thus the field extension on the left side of our diagram can be rewritten as $K\left({ }^{\zeta}\left(G_{K} / T_{K}\right)\right) / K$, where ζ is the W-torsor $\operatorname{Spec}(L) \rightarrow \operatorname{Spec}(K)$. By assumption, this field extension is purely transcendental; the diagram shows it is isomorphic to $k(\mathfrak{g}) / k(\mathfrak{g})^{G}$.

For the second reduction, we return to the assumptions of Section 3.

Proposition 5. Let G be a split simple group of type G_{2}, with maximal torus T and Weyl group W, and let \mathcal{Q} be the quadric defined in Section 3. Suppose that for a given W-model Y of $k(\mathcal{Q})^{T}$, and for some W-torsor ζ over some field K / k, the twisted variety $\zeta^{\zeta}\left(Y_{K}\right)$ is rational over K. Then the twisted variety ${ }^{\zeta}\left(G_{K} / T_{K}\right)$ is rational over K.

Proof. For the purpose of this proof, we may view K as a new base field and replace it with k.
We claim that the left action of P on G / T is generically free. Since G has trivial center, the (characteristic-free) argument at the beginning of the proof of [5, Lemma 9.1] shows that in order to establish this claim it suffices to show that the right T-action on $\mathcal{Q}=P \backslash G$ is generically free. The latter action, given by restricting the linear action (1) of T on \mathbb{P}^{6} to the quadric \mathcal{Q} given by (2), is clearly generically free.

Let Y be a W-model. The W-equivariant rational map $G / T \rightarrow Y$ induced by the projection $G \rightarrow P \backslash G=\mathcal{Q}$ is a rational quotient map for the left P-action on G / T; cf. [5, p. 458]. Since the P-action is generically free, this map is a P-torsor over the generic point of Y; see [3, Theorem 4.7]. By the functoriality of the twisting operation, after twisting by a W-torsor ζ, we obtain a rational map ${ }^{\zeta}(G / T) \rightarrow{ }^{\zeta} Y$, which is a P-torsor over the generic point of ${ }^{\zeta} Y$. This torsor has a rational section, since P is special; see Lemma 3. In particular, ${ }^{\zeta}(G / T)$ is k-birationally isomorphic to $P \times{ }^{\zeta} Y$. Since P is k-rational (once again, by Lemma 3), ${ }^{\zeta}(G / T)$ is rational over ${ }^{\zeta} Y$. Since ${ }^{\zeta} Y$ is rational over k, we conclude that so is ${ }^{\zeta}(G / T)$, as desired.

It remains to show that the hypothesis of Proposition 5 holds. As before, we may replace the field K with k. The following lemma completes the proof of Theorem 2.

Lemma 6. Let Y be a W-model for $k(Q)^{T}$. The twisted variety ${ }^{\zeta} Y$ is rational over k, for every W-torsor ζ over k.
Proof. We begin by constructing an explicit W-model. The affine open subset $\mathcal{Q}^{\text {aff }}=\left\{x_{1} x_{7}+x_{2} x_{6}+x_{3} x_{5}+1=0\right\} \subset \mathbb{A}^{6}$ (where $X_{4} \neq 0$) is $N(T)$-invariant. Here the affine coordinates on \mathbb{A}^{6} are $x_{i}:=X_{i} / X_{4}$, for $i \neq 4$. The field of rational functions invariant for the T-action on $\mathcal{Q}^{\text {aff }}$ is $k\left(y_{1}, y_{2}, y_{3}, z_{1}, z_{2}\right)$, where the variables

$$
y_{1}=x_{1} x_{7}, \quad y_{2}=x_{2} x_{6}, \quad y_{3}=x_{3} x_{5}, \quad z_{1}=x_{1} x_{5} x_{6}, \quad \text { and } \quad z_{2}=x_{2} x_{3} x_{7}
$$

are subject to the relations $y_{1}+y_{2}+y_{3}+1=0$ and $y_{1} y_{2} y_{3}=z_{1} z_{2}$. Thus we may choose as a W-model the affine subvariety Λ_{1} of \mathbb{A}^{5} given by these two equations, where $W=S_{2} \times S_{3}$ acts on the coordinates as follows: S_{2} permutes z_{1}, z_{2}, and S_{3} permutes y_{1}, y_{2}, y_{3}. (Recall the W-action defined in Section 3, and note that the field $k(\mathcal{Q})$ is recovered by adjoining the classes of variables x_{1} and x_{2}.) We claim that Λ_{1} is W-equivariantly birationally isomorphic to

$$
\begin{aligned}
& \Lambda_{2}=\left\{\left(Y_{1}: Y_{2}: Y_{3}: Z_{0}: Z_{1}: Z_{2}\right): Y_{1}+Y_{2}+Y_{3}+Z_{0}=0 \text { and } Y_{1} Y_{2} Y_{3}=Z_{1} Z_{2} Z_{0}\right\} \subset \mathbb{P}^{5}, \\
& \Lambda_{3}=\left\{\left(Y_{1}: Y_{2}: Y_{3}: Z_{1}: Z_{2}\right): Y_{1} Y_{2} Y_{3}+\left(Y_{1}+Y_{2}+Y_{3}\right) Z_{1} Z_{2}=0\right\} \subset \mathbb{P}^{4}, \quad \text { and } \\
& \Lambda_{4}=\left\{\left(Y_{1}: Y_{2}: Y_{3}: Z_{1}: Z_{2}\right): Z_{1} Z_{2}+Y_{2} Y_{3}+Y_{1} Y_{3}+Y_{1} Y_{2}=0\right\} \subset \mathbb{P}^{4},
\end{aligned}
$$

where W acts on the projective coordinates $Y_{1}, Y_{2}, Y_{3}, Z_{1}, Z_{2}, Z_{0}$ as follows: S_{2} permutes Z_{1}, Z_{2}, S3 permutes Y_{1}, Y_{2}, Y_{3}, and every element of W fixes Z_{0}. Note that $\Lambda_{2} \subset \mathbb{P}^{5}$ is the projective closure of $\Lambda_{1} \subset \mathbb{A}^{5}$; hence, using \simeq to denote W-equivariant birational equivalence, we have $\Lambda_{1} \simeq \Lambda_{2}$. The isomorphism $\Lambda_{2} \simeq \Lambda_{3}$ is obtained by eliminating Z_{0} from the system of equations defining Λ_{2}. Finally, the isomorphism $\Lambda_{3} \simeq \Lambda_{4}$ comes from the Cremona transformation $\mathbb{P}^{4} \rightarrow \mathbb{P}^{4}$ given by $Y_{i} \rightarrow 1 / Y_{i}$ and $Z_{j} \rightarrow 1 / Z_{j}$ for $i=1,2,3$ and $j=1,2$.

Let ζ be a W-torsor over k. It remains to be shown that ${ }^{\zeta} \Lambda_{4}$ is k-rational. Since Λ_{4} is a W-equivariant quadric hypersurface in \mathbb{P}^{4}, and the W-action on \mathbb{P}^{4} is induced by a linear representation $W \rightarrow \mathrm{GL}_{5}$, Hilbert's Theorem 90 tells us that $\zeta \mathbb{P}^{4}$ is k-isomorphic to \mathbb{P}^{4}, and ${ }^{\zeta} \Lambda_{4}$ is isomorphic to a quadric hypersurface in \mathbb{P}^{4} defined over k; see [7, Lemma 10.1]. It is easily checked that Λ_{4} is smooth over k, and therefore so is ${ }^{\zeta} \Lambda_{4}$. The zero-cycle of degree 3 given by $(1: 0: 0: 0: 0)+(0: 1: 0: 0: 0)+(0: 0: 1: 0: 0)$ in Λ_{4} is W-invariant, so it defines a zero-cycle of degree 3 in ${ }^{\zeta} \Lambda_{4}$. By Springer's theorem, the smooth quadric ${ }^{\zeta} \Lambda_{4}$ has a k-rational point, hence is k-rational.

Acknowledgement

We are grateful to J.-L. Colliot-Thélène for stimulating conversations.

References

[1] D. Anderson, Degeneracy loci and G_{2} flags, PhD thesis, University of Michigan, 2009, http://deepblue.lib.umich.edu/handle/2027.42/62415.
[2] D. Anderson, Chern class formulas for G_{2} Schubert loci, Trans. Amer. Math. Soc. 363 (12) (2011) 6615-6646.
[3] G. Berhuy, G. Favi, Essential dimension: A functorial point of view (after A. Merkurjev), Doc. Math. 8 (2003) 279-330.
[4] C. Chevalley, Les groupes de type G_{2}, in: Séminaire Claude Chevalley, tome 2 (1956-1958), reprinted in: Classification des groupes algébriques semisimples, Springer, 2005.
[5] J.-L. Colliot-Thélène, B. Kunyavskiĭ, V.L. Popov, Z. Reichstein, Is the function field of a reductive Lie algebra purely transcendental over the field of invariants for the adjoint action? Compos. Math. 147 (2011) 428-466.
[6] M. Demazure, P. Gabriel, Groupes algébriques, tome I, Masson \& Cie, Paris, 1970.
[7] A. Duncan, Z. Reichstein, Versality of algebraic group actions and rational points on twisted varieties, J. Alg. Geom. (2013), in press, arXiv:1109.6093.
[8] M. Florence, On the essential dimension of cyclic p-groups, Invent. Math. 171 (1) (2008) 175-189.
[9] I.M. Gelfand, A.A. Kirillov, Sur les corps liés aux algèbres enveloppantes des algèbres de Lie, IHES Publ. Math. 31 (1966) 5-19.
[10] J. Heinloth, Bounds for Behrend's conjecture on the canonical reduction, Int. Math. Res. Not. IMRN 14 (2008) rnn045, 17 pp.
[11] A. Premet, Modular Lie algebras and the Gelfand-Kirillov conjecture, Invent. Math. 181 (2) (2010) 395-420.
[12] J.-P. Serre, Galois Cohomology, Springer-Verlag, Berlin, 1997.
[13] T.A. Springer, F.D. Veldkamp, Octonions, Jordan Algebras, and Exceptional Groups, Springer, 2000.

[^0]: D. D.A. was partially supported by NSF Grant DMS-0902967. Z.R. was partially supported by National Sciences and Engineering Research Council of Canada Grant No. 250217-2012.

 E-mail addresses: dave@impa.br (D. Anderson), florence@math.jussieu.fr (M. Florence), reichst@math.ubc.ca (Z. Reichstein).
 1631-073X/\$ - see front matter © 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
 http://dx.doi.org/10.1016/j.crma.2013.10.029

