EI SEVIER

Contents lists available at ScienceDirect

C. R. Acad. Sci. Paris. Ser. I

www.sciencedirect.com

Group theory/Algebraic geometry

The Lie algebra of type G_2 is rational over its quotient by the adjoint action $^{\stackrel{\wedge}{}}$

Rationalité de l'algèbre de Lie de type G_2 sur son quotient par l'action adjointe

Dave Anderson^a, Mathieu Florence^b, Zinovy Reichstein^c

- a Instituto Nacional de Matemática Pura e Aplicada, Rio de Janeiro, RI 22460-320, Brazil
- ^b Institut de mathématiques de Jussieu, Université Paris-6, 4, place Jussieu, 75005 Paris, France
- ^c Department of Mathematics, University of British Columbia, BC V6T 1Z2, Canada

ARTICLE INFO

Article history: Received 27 August 2013 Accepted 24 October 2013

Presented by Jean-Pierre Serre

ABSTRACT

Let G be a split simple group of type G_2 over a field k, and let $\mathfrak g$ be its Lie algebra. Answering a question of J.-L. Colliot-Thélène, B. Kunyavskiĭ, V.L. Popov, and Z. Reichstein, we show that the function field $k(\mathfrak g)$ is generated by algebraically independent elements over the field of adjoint invariants $k(\mathfrak g)^G$.

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

RÉSUMÉ

Soit G un groupe algébrique simple et déployé de type G_2 sur un corps k. Soit $\mathfrak g$ son algèbre de Lie. On démontre que le corps des fonctions $k(\mathfrak g)$ est transcendant pur sur le corps $k(\mathfrak g)^G$ des invariants adjoints. Ceci répond par l'affirmative à une question posée par J.-L. Colliot-Thélène, B. Kunyavskiĭ, V.L. Popov et Z. Reichstein.

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let G be a split connected reductive group over a field k and let \mathfrak{g} be the Lie algebra of G. We will be interested in the following natural question:

Question 1. Is the function field $k(\mathfrak{g})$ *purely transcendental* over the field of invariants $k(\mathfrak{g})^G$ for the adjoint action of G on \mathfrak{g} ? That is, can $k(\mathfrak{g})$ be generated over $k(\mathfrak{g})^G$ by algebraically independent elements?

In [5], the authors reduce this question to the case where G is simple, and show that in the case of simple groups, the answer is affirmative for split groups of types A_n and C_n , and negative for all other types except possibly for G_2 . The standing assumption in [5] is that char(k) = 0, but here we work in arbitrary characteristic.

The purpose of this note is to settle Question 1 for the remaining case $G = G_2$.

E-mail addresses: dave@impa.br (D. Anderson), florence@math.jussieu.fr (M. Florence), reichst@math.ubc.ca (Z. Reichstein).

 [★] D.A. was partially supported by NSF Grant DMS-0902967. Z.R. was partially supported by National Sciences and Engineering Research Council of Canada Grant No. 250217-2012.

Theorem 2. Let k be an arbitrary field and G be the simple split k-group of type G_2 . Then $k(\mathfrak{g})$ is purely transcendental over $k(\mathfrak{g})^G$.

Under the same hypothesis, and also assuming char(k) = 0, it follows from Theorem 2 and [5, Theorem 4.10] that the field extension $k(G)/k(G)^G$ is also purely transcendental, where G acts on itself by conjugation.

Apart from settling the last case left open in [5], we were motivated by the (still mysterious) connection between Question 1 and the Gelfand–Kirillov (GK) conjecture [9]. In this context, char(k) = 0. A. Premet [11] recently showed that the GK conjecture fails for simple Lie algebras of any type other than A_n , C_n and G_2 . His paper relies on the negative results of [5] and their characteristic p analogues ([11], see also [5, Theorem 6.3]). It is not known whether a positive answer to Question 1 for $\mathfrak g$ implies the GK conjecture for $\mathfrak g$. The GK conjecture has been proved for algebras of type A_n (see [9]), but remains open for types C_n and G_2 . While Theorem 2 does not settle the GK conjecture for type G_2 , it puts the remaining two open cases—for algebras of type C_n and C_2 —on equal footing vis-à-vis Question 1.

2. Twisting

It is easy to see that if ζ is trivial then ζX is k-isomorphic to X. Hence, ζX is a k-form of X, i.e., X and ζX become isomorphic over an algebraic closure of k.

The twisting construction is functorial in X: a W-equivariant morphism $X \to Y$ (or rational map $X \dashrightarrow Y$) induces a k-morphism ${}^{\zeta}X \to {}^{\zeta}Y$ (resp., rational map ${}^{\zeta}X \dashrightarrow {}^{\zeta}Y$).

3. The split group of type G_2

We fix notation and briefly review the basic facts, referring to [13], [1], or [2] for more details. Over any field k, a simple split group G of type G_2 has a faithful seven-dimensional representation V. Following [2, (3.11)], one can fix a basis f_1, \ldots, f_7 , with dual basis X_1, \ldots, X_7 , so that G preserves the nonsingular quadratic norm $N = X_1X_7 + X_2X_6 + X_3X_5 + X_4^2$. (See [1, §6.1] for the case char(k) = 2. In this case V is not irreducible, since the subspace spanned by f_4 is invariant; the quotient $V/(k \cdot f_4)$ is the minimal irreducible representation. However, irreducibility will not be necessary in our context.) The corresponding embedding $G \hookrightarrow GL_7$ yields a split maximal torus and Borel subgroup $T \subset B \subset G$, by intersecting with diagonal and upper-triangular matrices. Explicitly, the maximal torus is:

$$T = \operatorname{diag}(t_1, t_2, t_1 t_2^{-1}, 1, t_1^{-1} t_2, t_2^{-1}, t_1^{-1}); \tag{1}$$

cf. [2, Lemma 3.13].

The Weyl group W = N(T)/T is isomorphic to the dihedral group with 12 elements, and the surjection $N(T) \to W$ splits. The inclusion $G \hookrightarrow GL_7$ thus gives rise to an inclusion $N(T) = T \rtimes W \hookrightarrow D \rtimes S_7$, where $D \subset GL_7$ is the subgroup of diagonal matrices. On the level of the dual basis X_1, \ldots, X_7 , we obtain an isomorphism $W \cong S_3 \times S_2$ realized as follows: S_3 permutes the three ordered pairs (X_1, X_7) , (X_6, X_2) , and (X_5, X_3) , and S_2 exchanges the two ordered triples (X_1, X_5, X_6) and (X_7, X_3, X_2) . The variable X_4 is fixed by W. For details, see $[2, \S A.3]$.

The subgroup $P \subset G$ stabilizing the isotropic line spanned by f_1 is a maximal standard parabolic, and the corresponding homogeneous space $P \setminus G$ is isomorphic to the five-dimensional quadric $Q \subset \mathbb{P}(V)$ defined by the vanishing of the norm, i.e., by the equation:

$$X_1X_7 + X_2X_6 + X_3X_5 + X_4^2 = 0. (2)$$

Note that the quadric Q is endowed with an action of T. An easy tangent space computation shows that P is smooth regardless of the characteristic of k.

Lemma 3. The group P is special, i.e., $H^1(l, P) = \{1\}$ for every field extension l/k. Moreover, P is rational, as a variety over k.

Proof. Since the split group of type G_2 is defined over the prime field, we may replace k by the prime field for the purpose of proving this lemma, and in particular, we may assume k is perfect. We begin by briefly recalling a construction of Chevalley [4]. The isotropic line $E_1 \subset V$ stabilized by P is spanned by f_1 , and P also preserves an isotropic 3-space E_3 spanned by f_1, f_2, f_3 ; see, e.g., [2, §2.2]. There is a corresponding map $P \to GL(E_3/E_1) \cong GL_2$, which is a split surjection thanks to the block matrix described in [10, p. 13] as the image of "B" in GL_7 . The kernel is unipotent, and we have a split exact sequence corresponding to the Levi decomposition:

$$1 \to R_u(P) \to P \to GL_2 \to 1. \tag{3}$$

Combining the exact sequence in cohomology induced by (3) with the fact that both $R_u(P)$ and GL_2 are special (see [12, pp. 122 and 128]), shows that P is special.

Since P is isomorphic to $R_u(P) \times GL_2$ as a variety over k, and P is smooth, so is $R_u(P)$. A smooth connected unipotent group over a perfect field is rational [6, IV, $\{2(3.10)\}$; therefore $R_u(P)$ is k-rational, and so is P. \Box

4. Proof of Theorem 2

Keep the notation of the previous section. By a W-model (of $k(Q)^T$), we mean a quasi-projective k-variety Y, endowed with a right action of W, together with a dominant W-equivariant k-rational map $\mathcal{O} \dashrightarrow Y$ which, on the level of function fields, identifies k(Y) with $k(Q)^T$. Such a map $Q \longrightarrow Y$ is called a (*W*-equivariant) rational quotient map. A *W*-model is unique up to a W-equivariant birational isomorphism; we will construct an explicit one below.

We reduce Theorem 2 to a statement about rationality of a twisted W-model, in two steps. The first holds for general split connected semisimple groups G.

Proposition 4. Let G be a split connected semisimple group over k, with split maximal k-torus T. Let $K = k(\mathfrak{t})^W$, $L = k(\mathfrak{t})$, and let ζ be the W-torsor corresponding to the field extension L/K. If the twisted variety $\zeta(G_K/T_K)$ is rational over K, then $k(\mathfrak{q})$ is purely transcendental over $k(\mathfrak{q})^G$.

Proof. Consider the $(G \times W)$ -equivariant morphism:

$$f: G/T \times_{\operatorname{Spec}(k)} \mathfrak{t} \to \mathfrak{g}$$

given by $(\bar{a}, t) \mapsto Ad(a)t$, where t is the Lie algebra of T, $\bar{a} \in G/T$ is the class of $a \in G$, modulo T. Here G acts on $G/T \times \mathfrak{t}$ by translations on the first factor (and trivially on t), and via the adjoint representation on q. The Weyl group W naturally acts on \mathfrak{t} and G/T (on the right), diagonally on $G/T \times \mathfrak{t}$, and trivially on \mathfrak{g} .

The image of f contains the semisimple locus in \mathfrak{g} , so f is dominant and induces an inclusion $f^*: k(\mathfrak{g}) \hookrightarrow k(G/T \times \mathfrak{t})$. Clearly $f^*k(\mathfrak{g}) \subset k(G/T \times \mathfrak{t})^W$. We will show that in fact:

$$f^*k(\mathfrak{g}) = k(G/T \times \mathfrak{t})^W. \tag{4}$$

Write \bar{k} for an algebraic closure of k, and note that the preimage of a \bar{k} -point of \mathfrak{g} in general position is a single W-orbit in $(G/T \times \mathfrak{t})_{\bar{b}}$. To establish (4), it remains to check that f is smooth at a general point (g, x) of $G/T \times \mathfrak{t}$. (In particular, when char(k) = 0 nothing more is needed.) To carry out this calculation, we may assume without loss of generality that k is algebraically closed and (since f is G-equivariant) g = 1. Since $\dim(G/T \times \mathfrak{t}) = \dim(\mathfrak{g})$, it suffices to show that the differential:

$$df: T_{(1,x)}(G/T \times \mathfrak{t}) \to T_x(\mathfrak{g})$$

is surjective, for any regular semisimple element $x \in \mathfrak{t}$. Equivalently, we want to show that $[x, \mathfrak{g}] + \mathfrak{t} = \mathfrak{g}$. Since x is regular, we have $\dim([x, \mathfrak{g}]) + \dim \mathfrak{t} = \dim \mathfrak{g}$. Thus it remains to show that $[x, \mathfrak{g}] \cap \mathfrak{t} = 0$. To see this, suppose $[x, y] \in \mathfrak{t}$ for some $y \in \mathfrak{g}$. Since x is semisimple, we can write $y = \sum_{i=1}^r y_{\lambda_i}$, where y_{λ} is an eigenvector for ad(x) with eigenvalue λ , and $\lambda_1, \ldots, \lambda_r$ are distinct. Then $[x, y] = \sum_{i=1}^r \lambda_i y_{\lambda_i} \in \mathfrak{t}$ is an eigenvector for ad(x) with eigenvalue 0. Remembering that eigenvectors of ad(x) with distinct eigenvalues are linearly independent, we conclude that [x, y] = 0. This completes the proof of (4). It is easy to see $k(G/T \times \mathfrak{t})^{G \times W} = k(\mathfrak{t})^W$. Summarizing, f^* induces a diagram:

$$k(G/T \times_{\operatorname{Spec}(k)} \mathfrak{t})^{W} \stackrel{\sim}{-\!\!\!-\!\!\!-} k(\mathfrak{g})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$k(\mathfrak{t})^{W} \stackrel{\sim}{-\!\!\!\!-\!\!\!\!-} k(\mathfrak{g})^{G},$$

where the top row is the G-equivariant isomorphism (4), and the bottom row is obtained from the top by taking *G*-invariants. Note that:

$$k(G/T \times_{\operatorname{Spec}(k)} \mathfrak{t}) \simeq K((G/T)_K \times_{\operatorname{Spec}(K)} \operatorname{Spec} L),$$

where \simeq denotes a G-equivariant isomorphism of fields. (Recall that G acts trivially on t and hence also on L and K.) Thus the field extension on the left side of our diagram can be rewritten as $K({}^{\zeta}(G_K/T_K))/K$, where ζ is the W-torsor $Spec(L) \rightarrow Spec(K)$. By assumption, this field extension is purely transcendental; the diagram shows it is isomorphic to $k(\mathfrak{g})/k(\mathfrak{g})^G$. \square

For the second reduction, we return to the assumptions of Section 3.

Proposition 5. Let G be a split simple group of type G_2 , with maximal torus T and Weyl group W, and let Q be the quadric defined in Section 3. Suppose that for a given W-model Y of $k(Q)^T$, and for some W-torsor ζ over some field K/k, the twisted variety ζ (Y_K) is rational over K. Then the twisted variety ζ (Y_K) is rational over Y_K .

Proof. For the purpose of this proof, we may view K as a new base field and replace it with k.

We claim that the left action of P on G/T is generically free. Since G has trivial center, the (characteristic-free) argument at the beginning of the proof of [5, Lemma 9.1] shows that in order to establish this claim it suffices to show that the right T-action on $Q = P \setminus G$ is generically free. The latter action, given by restricting the linear action (1) of T on \mathbb{P}^6 to the quadric Q given by (2), is clearly generically free.

Let Y be a W-model. The W-equivariant rational map $G/T \dashrightarrow Y$ induced by the projection $G \to P \setminus G = Q$ is a rational quotient map for the left P-action on G/T; cf. [5, p. 458]. Since the P-action is generically free, this map is a P-torsor over the generic point of Y; see [3, Theorem 4.7]. By the functoriality of the twisting operation, after twisting by a W-torsor ζ , we obtain a rational map ${}^{\zeta}(G/T) \dashrightarrow {}^{\zeta}Y$, which is a P-torsor over the generic point of ${}^{\zeta}Y$. This torsor has a rational section, since P is special; see Lemma 3. In particular, ${}^{\zeta}(G/T)$ is k-birationally isomorphic to $P \times {}^{\zeta}Y$. Since P is k-rational (once again, by Lemma 3), ${}^{\zeta}(G/T)$ is rational over ${}^{\zeta}Y$. Since ${}^{\zeta}Y$ is rational over k, we conclude that so is ${}^{\zeta}(G/T)$, as desired. \square

It remains to show that the hypothesis of Proposition 5 holds. As before, we may replace the field K with k. The following lemma completes the proof of Theorem 2.

Lemma 6. Let Y be a W-model for $k(Q)^T$. The twisted variety $^{\zeta}Y$ is rational over k, for every W-torsor ζ over k.

Proof. We begin by constructing an explicit W-model. The affine open subset $\mathcal{Q}^{\mathrm{aff}} = \{x_1x_7 + x_2x_6 + x_3x_5 + 1 = 0\} \subset \mathbb{A}^6$ (where $X_4 \neq 0$) is N(T)-invariant. Here the affine coordinates on \mathbb{A}^6 are $x_i := X_i/X_4$, for $i \neq 4$. The field of rational functions invariant for the T-action on $\mathcal{Q}^{\mathrm{aff}}$ is $k(y_1, y_2, y_3, z_1, z_2)$, where the variables

$$y_1 = x_1x_7$$
, $y_2 = x_2x_6$, $y_3 = x_3x_5$, $z_1 = x_1x_5x_6$, and $z_2 = x_2x_3x_7$

are subject to the relations $y_1 + y_2 + y_3 + 1 = 0$ and $y_1y_2y_3 = z_1z_2$. Thus we may choose as a W-model the affine subvariety Λ_1 of \mathbb{A}^5 given by these two equations, where $W = S_2 \times S_3$ acts on the coordinates as follows: S_2 permutes z_1 , z_2 , and S_3 permutes y_1 , y_2 , y_3 . (Recall the W-action defined in Section 3, and note that the field $k(\mathcal{Q})$ is recovered by adjoining the classes of variables x_1 and x_2 .) We claim that Λ_1 is W-equivariantly birationally isomorphic to

$$\begin{split} & \varLambda_2 = \big\{ (Y_1:Y_2:Y_3:Z_0:Z_1:Z_2):Y_1+Y_2+Y_3+Z_0 = 0 \quad \text{and} \quad Y_1Y_2Y_3 = Z_1Z_2Z_0 \big\} \subset \mathbb{P}^5, \\ & \varLambda_3 = \big\{ (Y_1:Y_2:Y_3:Z_1:Z_2):Y_1Y_2Y_3+(Y_1+Y_2+Y_3)Z_1Z_2 = 0 \big\} \subset \mathbb{P}^4, \quad \text{and} \\ & \varLambda_4 = \big\{ (Y_1:Y_2:Y_3:Z_1:Z_2):Z_1Z_2+Y_2Y_3+Y_1Y_3+Y_1Y_2 = 0 \big\} \subset \mathbb{P}^4, \end{split}$$

where W acts on the projective coordinates Y_1 , Y_2 , Y_3 , Z_1 , Z_2 , Z_0 as follows: S_2 permutes Z_1 , Z_2 , S_3 permutes Y_1 , Y_2 , Y_3 , and every element of W fixes Z_0 . Note that $\Lambda_2 \subset \mathbb{P}^5$ is the projective closure of $\Lambda_1 \subset \mathbb{A}^5$; hence, using \simeq to denote W-equivariant birational equivalence, we have $\Lambda_1 \simeq \Lambda_2$. The isomorphism $\Lambda_2 \simeq \Lambda_3$ is obtained by eliminating Z_0 from the system of equations defining Λ_2 . Finally, the isomorphism $\Lambda_3 \simeq \Lambda_4$ comes from the Cremona transformation $\mathbb{P}^4 \dashrightarrow \mathbb{P}^4$ given by $Y_i \to 1/Y_i$ and $Z_i \to 1/Z_i$ for i = 1, 2, 3 and j = 1, 2.

Let ζ be a W-torsor over k. It remains to be shown that ${}^{\zeta} \Lambda_4$ is k-rational. Since Λ_4 is a W-equivariant quadric hypersurface in \mathbb{P}^4 , and the W-action on \mathbb{P}^4 is induced by a linear representation $W \to \operatorname{GL}_5$, Hilbert's Theorem 90 tells us that ${}^{\zeta} \mathbb{P}^4$ is k-isomorphic to \mathbb{P}^4 , and ${}^{\zeta} \Lambda_4$ is isomorphic to a quadric hypersurface in \mathbb{P}^4 defined over k; see [7, Lemma 10.1]. It is easily checked that Λ_4 is smooth over k, and therefore so is ${}^{\zeta} \Lambda_4$. The zero-cycle of degree 3 given by (1:0:0:0:0)+(0:1:0:0)+(0:0:1:0:0)+(0:0:1:0:0) in Λ_4 is W-invariant, so it defines a zero-cycle of degree 3 in ${}^{\zeta} \Lambda_4$. By Springer's theorem, the smooth quadric ${}^{\zeta} \Lambda_4$ has a k-rational point, hence is k-rational. \square

Acknowledgement

We are grateful to J.-L. Colliot-Thélène for stimulating conversations.

References

- [1] D. Anderson, Degeneracy loci and G₂ flags, PhD thesis, University of Michigan, 2009, http://deepblue.lib.umich.edu/handle/2027.42/62415.
- [2] D. Anderson, Chern class formulas for G_2 Schubert loci, Trans. Amer. Math. Soc. 363 (12) (2011) 6615–6646.
- [3] G. Berhuy, G. Favi, Essential dimension: A functorial point of view (after A. Merkurjev), Doc. Math. 8 (2003) 279-330.
- [4] C. Chevalley, Les groupes de type G_2 , in: Séminaire Claude Chevalley, tome 2 (1956–1958), reprinted in: Classification des groupes algébriques semi-simples, Springer, 2005.
- [5] J.-L. Colliot-Thélène, B. Kunyavskiĭ, V.L. Popov, Z. Reichstein, Is the function field of a reductive Lie algebra purely transcendental over the field of invariants for the adjoint action? Compos. Math. 147 (2011) 428–466.
- [6] M. Demazure, P. Gabriel, Groupes algébriques, tome I, Masson & Cie, Paris, 1970.

- [7] A. Duncan, Z. Reichstein, Versality of algebraic group actions and rational points on twisted varieties, J. Alg. Geom. (2013), in press, arXiv:1109.6093. [8] M. Florence, On the essential dimension of cyclic *p*-groups, Invent. Math. 171 (1) (2008) 175–189.
- [9] I.M. Gelfand, A.A. Kirillov, Sur les corps liés aux algèbres enveloppantes des algèbres de Lie, IHES Publ. Math. 31 (1966) 5-19.
- [10] J. Heinloth, Bounds for Behrend's conjecture on the canonical reduction, Int. Math. Res. Not. IMRN 14 (2008) rnn045, 17 pp.
- [11] A. Premet, Modular Lie algebras and the Gelfand-Kirillov conjecture, Invent. Math. 181 (2) (2010) 395–420.
- [12] J.-P. Serre, Galois Cohomology, Springer-Verlag, Berlin, 1997.
- [13] T.A. Springer, F.D. Veldkamp, Octonions, Jordan Algebras, and Exceptional Groups, Springer, 2000.