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We introduce a Petrov–Galerkin regularized saddle approximation which incorporates a
“model” (partial differential equation) and “data” (M experimental observations) to yield
estimates for both state and model bias. We provide an a priori theory that identifies two
distinct contributions to the reduction in the error in state as a function of the number
of observations, M: the stability constant increases with M; the model-bias best-fit error
decreases with M . We present results for a synthetic Helmholtz problem and an actual
acoustics system.
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r é s u m é

Nous présentons une approximation de Petrov–Galerkin pour un problème de point
selle incorporant un « modèle » (équation aux dérivées partielles) et des « données »
(M observations expérimentales) afin d’obtenir une estimation conjointe de la variable
d’état et du biais de modèle. Notre théorie a priori identifie deux contributions à la
décroissance de l’erreur sur l’état en fonction du nombre d’observations expérimentales,
M : la croissance de la constante stabilité avec M ; la décroissance de l’estimation par
moindre carré du biais de modèle avec M . Nous présentons des résultats pour un problème
de Helmholtz synthétique ainsi que pour un système acoustique réel.

© 2013 Published by Elsevier Masson SAS on behalf of Académie des sciences.

1. Problem statement

We are given Hilbert spaces X , Y (with associated inner products (·, ·)X , (·, ·)Y and induced norms ‖ · ‖X , ‖ · ‖Y ) and
respective dual spaces X ′ , Y ′ (with associated dual norms ‖ · ‖X ′ , ‖ · ‖Y ′ ). We introduce an inverse Riesz representation
operator X : X → X ′ that satisfies, for each w ∈ X , 〈X w, v〉X ′×X = (w, v)X , ∀v ∈ X , and an inverse Riesz representation
operator Y :Y → Y ′ that satisfies, for each w ∈Y , 〈Y w, v〉Y ′×Y = (w, v)Y , ∀v ∈Y .

We first postulate a linear operator A : X → Y ′ which is inf–sup stable and continuous such that β0 ≡ infw∈X supv∈Y
〈Aw, v〉Y ′×Y/(‖w‖X ‖v‖Y ) > 0 and γ0 ≡ supw∈X supv∈Y 〈Aw, v〉Y ′×Y/(‖w‖X ‖v‖Y ) < ∞; we also define a functional
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f ∈ Y ′ . The pair {A, f } defines a mathematical model which reflects our “best knowledge” of a physical system; we then
introduce ubk ∈X solution of Aubk = f in the weak sense, 〈Aubk, v〉Y ′×Y = 〈 f , v〉Y ′×Y , ∀v ∈ Y .

We now introduce a field utrue ∈X which represents the true state of the physical system of interest and subsequently a
model bias g ≡ Autrue − f ; we also define a model-bias representation p ≡ X−1 A∗Y −1 g , where ∗ denotes adjoint. We shall
refer to both g ∈ Y ′ and p ∈ X as model bias with the context to determine the particular representation of interest. The
model bias reflects the effects not included in the “best-knowledge” model {A, f }; note that utrue satisfies Autrue = f + g ,
and hence ubk = utrue if and only if g = 0. Finally, we introduce observation functionals �o

m ∈ X ′,1 � m � M � dim(X ).
In any given experiment we invoke observations �o

m(uobs), m = 1, . . . , M , where uobs = utrue − qobs is the experimentally
observable state; we presume the “observation perturbation” qobs is bounded in X .

Our goal is to estimate utrue and g — both assumed deterministic and stationary — from the model {A, f } and M exper-
imental observations. Most state and bias estimation, and related parameter estimation, approaches [4–7] are informed by
minimization of a least-squares objective function which reflects regularization and model-observation misfit. One (Galerkin)
version of our method, too, can be derived from such a least-squares formulation. However, we pose the problem in a (reg-
ularized) saddle form which thus admits interpretation and analysis from a variational approximation perspective [10];
the latter, in turn, suggests and permits extensions and improvements — and, in particular, Petrov–Galerkin formulations
that cannot be derived from a least-squares minimization principle.

2. Model-data weak formulation

We first consider a least-squares minimization: for given ν ∈ R�0, find uM ∈X such that:

uM = arg min
w∈X

(‖ f − Aw‖2
Y ′ + ν−1

∥∥ΠM
(
uobs − w

)∥∥2
X

); (1)

here ΠM : X → XM is the projection operator onto an M-dimensional subspace XM , defined shortly, where, for any given
z ∈ X , ΠM z ∈ XM satisfies (ΠM z, v)X = (z, v)X , ∀v ∈ XM . We then state the Euler–Lagrange equation, written in a mixed
form, associated with the minimization problem: find (uM ,χM) ∈X ×XM such that:

s(uM , v) − (χM , v)X = 〈
A∗Y −1 f , v

〉
X ′×X , ∀v ∈ X ,

−(uM , φ)X − ν(χM , φ)X = −(
uobs, φ

)
X , ∀φ ∈ XM , (2)

where s(w, v) ≡ 〈A∗Y −1 Aw, v〉X ′×X ,∀w, v ∈ X . We choose XM = E {�o
m}

M ≡ span{φm}M
m=1 = span{X−1�o

m}M
m=1 such that

(uobs, φm)X can be evaluated as (uobs, φm)X = 〈Xφm, uobs〉X ′×X = �o
m(uobs); in other words, the inner product that con-

stitutes the right-hand side of the second equation is experimentally observable in the appropriate basis. Eq. (2) constitutes
a Galerkin approximation in the sense that the trial and test spaces are identical.

However, we may also consider different trial and test spaces, X trial
M �= X test

M , to obtain a Petrov–Galerkin approximation:
find (uM ,χM) ∈X ×X trial

M such that:

s(uM , v) − (χM , v)X = 〈
A∗Y −1 f , v

〉
X ′×X , ∀v ∈ X ,

−(uM , φ)X − ν(χM , φ)X = −(
uobs, φ

)
X , ∀φ ∈ X test

M ; (3)

here we choose X test
M = E {�o

m}
M , the experimentally observable space, but X trial

M �= X test
M need no longer be an experimen-

tally observable space. The Galerkin approximation (2) is a particular instance of the Petrov–Galerkin approximation (3)
with X trial

M = X test
M ≡ XM . Note that uM and χM depend on ν ∈ R�0, which we will specify in each instance as required.

Alternative saddle formulations may also be pursued and several advantageous choices are described in [11].
To facilitate the error analysis of (3), we may now introduce an abstract variational problem: find (u,χ) ∈ X × X such

that:

s(u, v) − (χ, v)X = 〈
A∗Y −1 f , v

〉
X ′×X , ∀v ∈ X ,

−(u, φ)X − ν(χ,φ)X = −(
uobs + qobs, φ

)
X − ν(p, φ)X , ∀φ ∈ X . (4)

We readily verify that the solution to the abstract problem is given by u = utrue (the true state) and χ = p (the true model
bias). Note that the Petrov–Galerkin approximation (3) results from (i) neglecting the perturbation terms νp and qobs in (4),
and (ii) replacing the trial space for the model bias, and the test space for the second equation of (4), with respective
M-dimensional subspaces X trial

M ⊂X and X test
M ⊂X . Hence, (3) constitutes our “limited-observations” approximation to the

unlimited-observations problem (4); note also that ubk = uM=0.
In the Galerkin case, we can demonstrate stability; however we can not expect rapid convergence for the de rigueur

experimentally observable trial spaces, as demonstrated in [11] for certain illustrative cases. In the Petrov–Galerkin case, we
choose a suitable trial space for model-bias approximation and then choose the associated test space to provide maximum
stability [2,3]; although we cannot generally demonstrate stability for arbitrary spaces, the Petrov–Galerkin formulation
offers the advantage of potentially rapidly convergent trial spaces.
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3. Analysis: Galerkin formulation

We now proceed to the a priori analysis of the error in the state estimate uM ∈X and the model-bias estimate χM ∈X trial
M

with respect to the true state utrue ∈ X and true model bias p ∈ X , respectively. We shall restrict our analysis (but not
numerical results) in this Note to the Galerkin case. By way of preliminaries, we first introduce an energy norm:

‖|w‖|M,ν ≡ (
s(w, w) + ν−1‖ΠM w‖2

X
)1/2

, ∀w ∈ X , (5)

parameterized by M and ν . We may then define our stability constant:

βM,ν ≡ inf
w∈X

‖|w‖|M,ν

‖w‖X . (6)

We in addition introduce a continuity constant associated with the s(·, ·) bilinear form, γ , which in fact is the square of the
continuity constant of A: γ = γ 2

0 .
We then have the following proposition for the error in our state and model-bias estimates:

Proposition 1. In the Galerkin case, the state error utrue − uM ∈X and the model-bias error p − χM ∈X satisfy:

∥∥utrue − uM
∥∥
X � 1

βM,νopt

(
1

β2
M,2νopt

‖p − ΠM p‖2
X + 8‖p‖X

∥∥qobs
∥∥
X

)1/2

,

‖p − χM‖X � γ

βM,νopt

(
1

β2
M,2νopt

‖p − ΠM p‖2
X + 8‖p‖X

∥∥qobs
∥∥
X

)1/2

, (7)

respectively, for νopt ≡ ‖qobs‖X /‖p‖X .

There are three contributions to the error in the state: the observation perturbation term ‖qobs‖X , which we do not
control and which ultimately dictates the achievable error; the error in the best-fit approximation to p in XM(=X trial

M ); and
finally, the stability constant βM,νopt . As regards the latter, we can prove the following.

Proposition 2. For given ν ∈R�0 ,

βM ′,ν � βM ′−1,ν , M ′ = 1, . . . , M. (8)

Furthermore, βM=0,ν = β0 and βM′,ν � β0 , M ′ = 1, . . . , M, where β0 is the inf–sup constant of the operator A (hence absent any
observations).

It is possible based on SVD considerations [1] to prove that for certain idealized hierarchical test spaces X test
M′ that in-

clude the M ′ least stable trial singular functions of A ∈ L(X ,Y ′), the stability constant βM′,ν=0 is equal to the (M ′ + 1)th
generalized singular value of A: a form of E-stability from design of experiments [4]. We may devise an SVD-based anti-
node heuristic for development of experimentally observable spaces which roughly replicates the ideal trial singular function
choice; we may alternatively choose the observation locations based on other methods, for example the Empirical Interpo-
lation Method [8,9].

Finally, we may consider the special but important “perfect-observations” case in which qobs ≡ 0 and we may hence
choose ν = 0. In this case our state and model-bias approximation (2) reduces to a true saddle problem which in the
Galerkin case furthermore corresponds to constrained least squares (or constrained estimation). We may then demonstrate:

Proposition 3. For the Galerkin case, and qobs ≡ 0 and ν = 0, the state error, utrue − uM ∈ X , and model-bias error, p − χM ∈ X ,
satisfy:

∥∥utrue − uM
∥∥
X � 1

β2
M,ν=0

‖p − ΠM p‖X ,

‖p − χM‖X � γ

β2
M,ν=0

‖p − ΠM p‖X . (9)

Proof. Application of the Brezzi–Babuška theory (for example, Theorem 7.4.3 of [10]) to the saddle problem (2) (for qobs ≡ 0,
ν = 0) yields the desired result. �

The general result of Proposition 1 reduces to the perfect-observations case of Proposition 3 in the limit qobs → 0. In both
Proposition 1 and Proposition 3, in fact we can sharpen the bound: we can transfer the A∗ in s(·, ·) to the test function to
reduce the dependence on the inf–sup constant from quadratic to linear [11].
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Table 1
The stability constant βM,ν=0, state error ‖utrue − uM‖X , and model-bias error ‖p −χM‖X as a function of the number of observations M for the synthetic
two-dimensional Helmholtz problem.

trial space I trial space II

M βM,ν=0 ‖utrue − uM‖X ‖p − χM‖X ‖utrue − uM‖X ‖p − χM‖X
0 0.0011 5.9134 0.0591 5.9134 0.0591
1 0.0011 5.2537 0.0591 6.5791 2.8844
2 0.0147 0.7396 0.0591 8.0641 1.8068
5 0.0589 0.3053 0.0557 0.2020 0.1499

10 0.0700 0.2636 0.0537 0.0889 0.0358
20 0.1946 0.0931 0.0391 0.0110 0.0032

4. Computational results

We first consider a synthetic model Helmholtz problem over Ω ≡ ]0,1[2 in which we specify not only the best-
knowledge model {A, f } and observation functionals but also the quantities that in actual practice would be “provided” by
the physical system (and unknown to us): the model bias g , which (with A and f ) determines utrue from Autrue = f + g;
and the actual experimental observations, which we presume are perfect (qobs ≡ 0, and hence νopt = 0). In what follows
k ∈ R denotes the reduced frequency or wavenumber; we shall choose k = 3π + 0.01 which lies slightly above a resonance.
We further set X ≡ H1(Ω) and Y ≡ H1(Ω) and equip both spaces with inner product

∫
Ω

∇w · ∇v dx + k2
∫
Ω

w v dx and
induced norm ‖w‖X ≡ ‖w‖Y ≡ √

(w, w)X . (In practice, and in general, we replace the continuous spaces X and Y with a
discrete counterpart, for this problem a 512-element P

5 continuous finite element space.)
We first specify the best-knowledge model {A, f }: the Helmholtz operator A : X → Y ′ is given by 〈Aw, v〉Y ′×Y =∫

Ω
∇w · ∇v dx − k2

∫
Ω

w v dx, ∀w ∈ X , ∀v ∈ Y ; the functional f is given by 〈 f , v〉Y ′×Y = ∫
Ω

(2x2 + y)v dx, where (x, y)

denotes a point in Ω; we impose homogeneous Neumann boundary conditions everywhere on ∂Ω . We next specify the ob-
servation functionals �o

m , m = 1, . . . , M: functional �o
m is a bivariate Gaussian with center xo

m and standard deviation 0.02; the
centers xo

m are obtained by application of the Empirical Interpolation Method [8] to P
p(M)(Ω), the space spanned by the first

M hierarchically ordered members of the bivariate (complete, not tensorized) polynomials (1, x, y, x2, xy, y2, x3, x2 y, . . .). Fi-
nally, we prescribe the synthetic model bias as 〈g, v〉Y ′×Y = ∫

Ω
(cos(1.3πx) + y7/2)v dx.

It remains to choose the approximation spaces. The test space X test
M is completely determined by the observation

functionals: X test
M = span{φm}M

m=1 = span{X−1�o
m}M

m=1. For the trial space we consider two options: for trial space I, in
the Galerkin framework, we choose X trial

M ≡ X test
M ; for trial space II, now in the Petrov–Galerkin framework, we choose

X trial
M ≡ P

p(M)(Ω), the aforementioned hierarchical polynomial space.
The results are summarized in Table 1. For trial space I, Galerkin, we expect from Proposition 2 an improvement in the

stability constant and indeed we observe a rapid decrease in error for small M . (Note that k = 3π is a degenerate reso-
nance wave number with multiplicity two, for which (special) reason the stability constant βM,ν=0 improves only with the
second observation.) However, the asymptotic convergence rate is slow given the relatively poor approximation properties
of experimentally observable spaces. In contrast, for trial space II, Petrov–Galerkin, we can not yet prove and hence pre-
sume a uniform improvement in the stability constant, and indeed we do not observe any significant decrease in error for
small M . However, the asymptotic convergence rate is rapid given the high-order approximation spaces (accommodated by
the Petrov–Galerkin recipe) and the quite regular model bias, p.

We now consider a second problem for which we invoke real data: a raised-box acoustic resonator [11]. In this
three-dimensional acoustic problem with real data, we apply the complex-field extension of the framework developed in
Sections 1 and 2. The physical system is a bottomless (5-sided) acrylic box of interior dimensions 12 × 7 × 5 inches and
wall thickness 0.06 inches which is raised 0.22 inches above a larger acrylic floor panel; a speaker (Tang Band W2-1625SA)
is placed symmetrically in one of the two 7 × 5 “end-walls” of the raised box to serve as a mono-chromatic sound source
of prescribed frequency (in Hz). The pressure may be measured by a microphone as a function of time at any spatial point
and then reduced to complex form (frequency description) by standard regression methods. The errors in the observations
are quite small relative to the desired accuracy [11] such that (i ) we may assume qobs is effectively zero, uobs ≈ utrue, and
choose ν = 0 in our formulation, and furthermore (ii ) experiment may serve as a surrogate for the truth for purposes of
assessment.

We choose for our best-knowledge model A and f the Helmholtz operator with Neumann conditions on the speaker (in-
homogeneous, uniform) and walls (homogeneous) and radiation conditions in the farfield. Note that the speaker is modeled
as a calibrated electromechanical harmonic oscillator from which we derive a transfer function from speaker input voltage
(measured) to normal diaphragm velocity — which is then incorporated in f [11]. In the best-knowledge model the walls
are of finite thickness but rigid.

We consider M = 5 experimental observation Gaussians (at randomly selected centers, {xo
m}5

m=1) and apply the Galerkin
framework (for ν = 0, as motivated above). We plot in Fig. 1(a) the amplitude of the state estimate, as a function of
frequency, calculated as the application of an assessment Gaussian with center xa = (8.60,2.82) (a distance of 1.46 inches
from the nearest observation Gaussian center); we also present the corresponding experimental observations at this same
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Fig. 1. (a) Pressure response (normalized by Z dim
0 V dim

spk , where Z dim
0 is the acoustic impedance of air and V dim

spk is the speaker diaphragm velocity) as a
function of frequency at a particular assessment point in the raised box as predicted by the “best-knowledge” model (M = 0) and our model-data weak
formulation (M = 5) and as measured in practice (experiment). (b) The stability constant βM,ν as a function of frequency for M = 0 and M = 5. Note (·)dim

refers to dimensional quantities.

spatial point. The dramatic improvement in the prediction of the pressure by incorporation of just M = 5 experimental
observations is due to the sizable increase of the stability constant, as demonstrated in the plot of βM,ν=0 in Fig. 1(b).
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