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© 2013 Published by Elsevier Masson SAS on behalf of Académie des sciences.

r é s u m é

Dans cette brève Note, on donne un raffinement de l’inégalité de Brascamp–Lieb [1] dans
le style de l’extension de Houdré–Kagan [3] pour l’inégalité de Poincaré en une dimension.
Cette Note est inspirée par les travaux de Helffer et de Ledoux.

© 2013 Published by Elsevier Masson SAS on behalf of Académie des sciences.

1. The Brascamp–Lieb inequality

We take a convex potential V : R → R which is Ck with k � 2 and the measure μ(dx) = e−V (x) dx which we assume to
be a probability measure on R.

Theorem 1. (See Brascamp and Lieb [1].) If V ′′ > 0, then for any C2 compactly supported function f on the real line:

Varμ(φ)�
∫

( f ′)2

V ′′ dμ. (1.1)

One of the proofs is due to Helffer [2] and we sketch it here as it were the starting point of our approach.
Consider the operator L acting on C2 functions, given by:

L = −D2 + V ′D
with Dφ = φ′ . We denote 〈·, ·〉 the L2(μ) inner product and observe that:

〈Lφ,φ〉 = ∥∥φ′∥∥2
.

In particular, L can be extended to an unbounded non-negative operator on L2(μ). From this, we get:

‖Lφ‖2 = 〈DLφ, Dφ〉 (1.2)
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and then if we take f a C2 compactly supported function such that
∫

f dμ = 0 and replace φ = L−1 f , then we get:

Varμ( f ) = 〈
f ′, DL−1 f

〉
.

Now a simple calculation reveals that:

DL = (
L + V ′′)D

and then (L + V ′′)−1 D = DL−1 where the inverses are defined appropriately. Therefore, we get:

Varμ( f ) = 〈(
L + V ′′)−1

f ′, f ′〉. (1.3)

Since L is a non-negative operator, (L + V ′′)−1 � (V ′′)−1 and this implies (1.1).

2. Refinements in the case of R

We start with (1.3) and iterate it. This is inspired from [4], but without any use of the semigroup theory.
We let D be the derivation operator and we denote D∗ = −D + V ′ the adjoint of D with respect to the inner product in

L2(μ). In the sequel, for a given function F , we are going to denote by F also the multiplication operator by F . The main
commutation relations are the content of the following.

Proposition 2. Let A denote the operator defined on smooth positive functions E given by

A(E)(x) = 1

4

(
2E ′′(x) + 2V ′(x)E ′(x) − E ′(x)2

E(x)
+ 4E(x)V ′′(x)

)
. (2.1)

(1) If E is a positive function, then

D E D∗ = A(E) + E1/2 D∗D E1/2. (2.2)

(2) For a positive function E,

(
E + D∗D

)−1 = E−1 − E−1 D∗(I + D E−1 D∗)−1
D E−1. (2.3)

(3) If E is a positive function such that 1 +A(E−1) is positive and F = E(1 +A(E−1)), then

(
I + D E−1 D∗)−1 = F −1 E − E1/2 F −1 D∗(I + D F −1 D∗)−1

D F −1 E1/2. (2.4)

Proof. (1) We want to find two functions F and G such that:

D E D∗ = F + G D∗DG.

For this, take a function φ and write:

(
D E

(−D + V ′))φ = (
E V ′)′

φ + (−E ′ + E V ′)φ′ − Eφ′′

while

Fφ + G
(−D + V ′)DGφ = (

F − GG ′′ + GG ′V ′)φ + (
G2 V ′ − 2GG ′)φ′ − G2φ′′

therefore it suffices to choose G such that:

G2 = E and F = GG ′′ − GG ′V ′ + (
E V ′)′

which means G = E1/2 and F =A(E).
(2) We have:

(
E + D∗D

)−1 = E−1 − E−1/2(I − (
I + E−1/2 D∗D E−1/2)−1)

E−1/2

= E−1 − E−1 D∗(I + D E−1 D∗)−1
D E−1

where we used the fact that for any operator T ,

I − (
I + T ∗T

)−1 = T ∗(I − T T ∗)−1
T .
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(3) From (2.2), we know that I + D E−1 D∗ = I +A(E−1) + E−1/2 D∗D E−1/2 = F E−1 + E−1/2 D∗D E−1/2 and from (2.3),

(
F E−1 + E−1/2 D∗D E−1/2)−1 = E1/2(F + D∗D

)−1
E1/2 = F −1 E − E1/2 F −1 D∗(I + D F −1 D∗)−1

D F −1 E1/2. �
Now, let us get back to the fact that L = D∗D and that (1.3) gives:

Varμ( f ) = 〈(
V ′′ + D∗D

)−1
f ′, f ′〉.

From (2.3) with E1 = V ′′ , we obtain first that:

Varμ( f ) = 〈(
V ′′)−1

f ′, f ′〉 − 〈(
I + D E−1

1 D∗)−1
D

[
E−1

1 f ′], D
[

E−1
1 f ′]〉. (2.5)

It is interesting to point out that this provides the case of the equality Brascamp–Lieb if D[(V ′′)−1 f ′] = 0, which can be
solved for f = C1 V ′ + C2.

Now we want to continue the inequality in (2.5) by taking E1 = E and using (2.5) for the case where E2 =
E1(I +A(E−1

1 )) > 0; thus we go on with:

(
I + D E−1

1 D∗)−1 = E−1
2 E1 − E1/2

1 E−1
2 D∗(I + D E−1

2 D∗)−1
D E−1

2 E1/2
1 .

Hence we can write by setting f1 = E−1
1 f ′ and f2 = E1/2

1 D[ f1]

Varμ( f ) = ∥∥E−1/2
1 f ′∥∥2 − ∥∥E−1/2

2 f2
∥∥2 + 〈(

I + D E−1
2 D∗)−1

D
[

E−1
2 f2

]
, D

[
E−1

2 f2
]〉
.

Using a similar argument, let E3 = E2(1 +A(E−1
2 )) provided that E3 is positive. Then we can continue with:

(
I + D E−1

2 D∗)−1 = I +A
(

E−1
2

) − E1/2
2 E−1

3 D∗(I + D E−1
3 D∗)−1

D E−1
3 E1/2

2

and letting f3 = E1/2
2 D[ f2], we obtain:

Varμ( f ) = ∥∥E−1/2
1 f ′∥∥2 − ∥∥E−1/2

2 f2
∥∥2 + ∥∥E−1/2

3 f3
∥∥2 − 〈(

I + D E−1
3 D∗)−1

D
[

E−1
3 f3

]
, D

[
E−1

3 f3
]〉
.

By induction, we can define:

E1 = V ′′ and f1 = E−1
1 f ′ (2.6)

En = En−1
(
1 +A

(
E−1

n−1

))
and fn = E1/2

n−1 D[ fn−1]. (2.7)

Notice that here En is defined only if En−1 is defined and positive, and we will assume that the sequence is defined as long
as this condition is satisfied. We get the following result.

Theorem 3. If E1, E2, . . . , En are positive functions, then for any compactly supported function f ,

Varμ( f ) = ∥∥E−1/2
1 f ′∥∥2 − ∥∥E−1/2

2 f2
∥∥2 + · · · + (−1)n−1

∥∥E−1/2
n fn

∥∥2

+ (−1)n〈(I + D E−1
n D∗)−1

D
[

E−1
n fn

]
, D

[
E−1

n fn
]〉
. (2.8)

In particular, for n even,

Varμ( f )�
∥∥E−1/2

1 f ′∥∥2 − ∥∥E−1/2
2 f2

∥∥2 + · · · + (−1)n−1
∥∥E−1/2

n fn
∥∥2

and for n odd,

Varμ( f )�
∥∥E−1/2

1 f ′∥∥2 − ∥∥E−1/2
2 f2

∥∥2 + · · · + (−1)n−1
∥∥E−1/2

n fn
∥∥2

.

For V (x) = x2/2 − log(
√

2π) this leads to the following version of Houdré–Kagan inequality [3] due to Ledoux [4].

Corollary 4. For V (x) = x2/2 − log(
√

2π ) and f which is Cn with compact support, the following holds true:

Varμ( f ) = ∥∥ f ′∥∥2 − 1

2!
∥∥ f ′′∥∥2 + · · · + (−1)n−1

(n − 1)!
∥∥ f (n−1)

∥∥2 + (−1)n

(n − 1)!
〈
(n + L)−1 f (n), f (n)

〉
.

Another particular case of Theorem 3 is the following reverse-type Brascamp–Lieb inequality.
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Corollary 5. Provided that 1 +A((V ′′)−1) > 0, the following holds:

Varμ( f ) �
〈(

V ′′)−1
f ′, f ′〉 − 〈(

1 +A
((

V ′′)−1))−1
D

[(
V ′′)−1

f ′], D
[(

V ′′)−1
f ′]〉.

Furthermore, 1 +A((V ′′)−1) > 0 is equivalent to

3V (3)(x)2 + 8V ′′(x)3 − 2V (4)(x)V ′′(x) − 2V (3)(x)V ′′(x)V ′(x) > 0. (2.9)

For instance, in the case where a,b > 0 and

V (x) = ax2/2 + bx4/4 + C

(where C is the normalizing constant which makes μ a probability), the condition (2.9) reads as:

2a3 − 3ab + (
15a2b + 18b2)x2 + 42ab2x4 + 45b3x6 > 0 (∗)

for any x. In particular, for x = 0, this gives 3b < 2a2, which turns out to be enough to guarantee (∗) for any other x. For
the next corrections, the condition 1 +A(E−1

2 ) > 0 becomes equivalent to:

4a9 − 18a7b + 27a3b3 + (
90a8b − 225a6b2 + 504a4b3 + 540a2b4)x2

+ (
916a7b2 − 756a5b3 + 4203a3b4 − 162ab5)x4

+ (
5563a6b3 + 2172a4b4 + 11124a2b5 + 1944b6)x6 + (

22326a5b4 + 23868a3b5 + 7209ab6)x8

+ (
61689a4b5 + 74817a2b6 − 5832b7)x10 + (

117864a3b6 + 109026ab7)x12 + (
150741a2b7 + 63180b8)x14

+ 117450ab8x16 + 42525b9x18 > 0

for all x. This turns out to be equivalent to b < 1
3 (−1 + √

3 )a2. In general, for higher corrections, the condition En > 0
appears to be equivalent to a condition of the form b < a2tn for some tn > 0 that is decreasing in n to 0. We do not have a
solid proof of this, but some numerical simulations suggest this conclusion.

Another example is the potential V (x) = x2/2 − a log(x2) + C with a > 0, for which condition (2.9) becomes equivalent
to:

4a3 − 3ax2 + 12a2x2 + 7ax4 + x6 > 0

for all x. This turns out to be equivalent to a > a0, where a0 is the solution in (0,1) of the equation 108 − 855a + 144a2 +
272a3 = 0 and numerically is a0 ≈ 0.129852. For the second-order correction, a numerical simulation indicates that we
need to take a > a1 with a1 ≈ 0.314584. Some numerical approximations suggest that En > 0 is equivalent to a > an with
an being an increasing sequence to infinity.
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