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Partial differential equations

An example of non-decreasing solution for the KdV equation
posed on a bounded interval

Un exemple de solution non décroissante de l’équation de KdV posée sur un
intervalle borné

Gleb Germanovitch Doronin, Fábio M. Natali 1

Departamento de Matemática, Universidade Estadual de Maringá, 87020-900, Maringá, PR, Brazil

a r t i c l e i n f o a b s t r a c t

Article history:
Received 14 December 2013
Accepted after revision 4 February 2014
Available online 3 April 2014

Presented by the Editorial Board

An initial-boundary value problem for the KdV equation posed on a bounded interval is
considered. The theory of Jacobi elliptic functions is used to obtain a new kind of stationary
waves which are spatially periodic with a period equal to an interval length. The properties
of those solutions are studied.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

On considère un problème avec donnée initiale et au bord pour l’équation de KdV posée sur
un intervalle borné. La théorie des fonctions elliptiques de Jacobi est utilisée pour obtenir
un nouveau type d’ondes stationnaires qui sont périodiques en espace avec une période
égale à une longueur d’intervalle. Les propriétés de ces solutions sont étudiées.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

It is well known [1] that the KdV equation

vt + v vx + vxxx = 0 (1.1)

possesses spatially periodic cnoidal-wave solutions which are determined to be stable to a perturbation of the same period.
They can be written explicitly as

v(x, t) = a + bcn2(d(x − ct);k
)

(1.2)

in terms of the Jacobi elliptic function cn(x;k) where the elliptic modulus k and the parameters a, b, c and d are connected
by a system of nonlinear transcendental equations (see [9]).
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Eq. (1.1) has been deduced to describe long waves of a small amplitude propagating in a dispersive media that occupies
all the spatial domain (x ∈ R). Numerical needs, however, require to cut-off the infinite domains of wave propagation [2].
The correct equation in this case (see, for instance, [2,12]) should be written as

vt + vx + v vx + vxxx = 0. (1.3)

Once bounded intervals are considered as a spatial region of waves propagation, their lengths appear to be restricted by
certain critical conditions. An important result in this context is the countable critical set (see e.g. [11]):

N = 2π√
3

√
k2 + kl + l2; k, l ∈N. (1.4)

While studying the controllability and stabilization of solutions for (1.3), the set N provides qualitative difficulties when the
length of a spatial interval coincides with some of its elements. In fact, the function

v(x) = 1 − cos x

is a stationary (not decaying) solution for linearized (1.3) posed on (0,2π), and 2π ∈ N . However, if the transport term
vx is neglected, then (1.3) becomes (1.1), and the exponential decay rate of small solutions for (1.1) posed on any bounded
interval is known to be held [7]. For (1.3) the same result has been shown if L /∈N (see [10]). The following questions arise:

• are there solutions of (1.3) which do not decay for L ∈N ?
• if so, what is a “nonlinear analog” of N ?

Despite the valuable advances in [4–6], the question of whether solutions of undamped problems associated with non-
linear KdV decay as t → ∞, for all finite interval lengths, is open (up to our knowledge).

In the present note, we construct explicitly the stationary solutions to homogeneous IBVP for nonlinear KdV (1.3) posed
on a bounded interval (0, L) ⊂ R with some (critical) values of L > 0. These solutions clearly do not decay in time and can
be viewed as nontrivial periodic solutions of (1.3) with spatial period L that are different from (1.2), as well as from the
example of [8], where the authors have determined the existence of stationary solutions linked to Eq. (1.1) which is different
from (1.3). Moreover, the authors do not provide how the solution depends on L > 0.

2. Main results

We start with the following result which guarantees the existence of explicit stationary solutions of the form:

v(x, t) = φ(x) (2.1)

related to the following initial boundary value problem:

vt + vx + v vx + vxxx = 0, (2.2)

v(0, t) = v(L, t) = 0, (2.3)

vx(L, t) = 0, (2.4)

v(x,0) = φ(x). (2.5)

Theorem 1. For all L ∈ (0,2π), there exists a stationary solution φ ∈ C∞(R) satisfying

(i) φ′ + 1
2 (φ2)′ + φ′′′ = 0, in R,

(ii) φ(x + L) = φ(x), ∀x ∈R,
(iii) φ(0) = φ′(0) = 0, φ′′(0) 	= 0.

Proof. In fact, let L ∈ (0,2π) be fixed. Substituting v(x, t) = φ(x) into (2.2)–(2.5) one has

φ′ + 1

2

(
φ2)′ + φ′′′ = 0,

φ(0) = φ(L) = φ′(L) = 0

which reads

φ + 1

2
φ2 + φ′′ = A,

φ(0) = φ(L) = φ′(L) = 0, (2.6)
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with an integration constant A ∈ R. Two right-hand-side boundary conditions reduce (2.6) to be

φ′2 = 1

3

(−φ3 − 3φ2 + 6Aφ
)
,

φ(0) = 0. (2.7)

Define the polynomial

F A(y) = −y3 − 3y2 + 6Ay. (2.8)

We are going to solve (2.7), provided that F A(y) � 0 for y from a convenient interval to be determined. Moreover, since
φ(0) = φ(L) = φ′(L) = 0, it is natural to seek for solutions of (2.7) as for L-periodic solutions of (2.6).

Our aim now is to provide sufficient conditions on the value of A ∈ R in order to get periodic solutions. First, we assume
F A to be engaged with three distinct roots disposed as η1 < 0 < η2, that is

F A(y) = (η2 − y)(y − η1)y.

Since

η1 + η2 = −3 and η1η2 = −6A,

one can assume A > 0. We discard the case η1 < η2 < 0 as not relevant for our purpose.
Solving F A = 0, one get

η2 = −3 + √
9 + 24A

2
and η1 = −3 − √

9 + 24A

2
.

Aiming F A(y) � 0, it holds

0 � φ(x) � η2

for all x ∈ [0, L]. Moreover, one has φ(L/2) = η2 as the maximum point of the solution.
Next, from (2.7) one has

φ∫
0

dy√−y3 − 3y2 + 6Ay
= 1√

3
(x + M), φ(0) = 0. (2.9)

where M ∈R is a constant of integration.
We solve Eq. (2.9) by using the theory of elliptic functions. Ref. [3] is strongly recommended to the reader for a more

complete explanation of this subject.
Thus, we employ formula 236.00 from [3] to deduce the explicit solution φ of (2.6) as

φ(x) = a sd2(bx;k), (2.10)

where “sd” is the Jacobi elliptic function called “snoidal–dnoidal” (sd = sn/dn) and k ∈ (0,1) is the modulus of the elliptic
function. Here, parameters a, b and A are given in terms of the modulus k as

a = 3k2(1 − k2)(1 − 2k2)

1 − 4k2 + 4k4
, b = 1

2
√

1 − 2k2
, A = 3k2(1 − k2)

2(1 − 4k2 + 4k4)
.

Thus, the periodic solution φ becomes

φ(x) =
[

3k2(1 − k2)

1 − 2k2

]
sd2

(
1

2
√

1 − 2k2
x;k

)
. (2.11)

Since the function sd2 is 2K (k)-periodic, a convenient expression for L > 0 with respect to k reads

L(k) = 4K (k)
√

1 − 2k2. (2.12)

Here

K (k) =
1∫

0

dt√
(1 − t2)(1 − k2t2)

is the complete Jacobi elliptic integral of the first kind. Function L(k) is strictly decreasing for k ∈ (0,1/
√

2) with

lim
k→0+ L(k) = 2π and lim

k→(1/
√

2)−
L(k) = 0. �

The graph of φ defined by (2.11) is visualized below for L = 6, see Fig. 1.
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Fig. 1. The graph of φ from (2.10) for L = 6. Fig. 2. The graph of φ from (2.10) for L = π .

Remark 2.1. The existence of periodic waves associated with (2.6) can also be determined by using a planar qualitative
analysis of the general second-order differential equation

−u′′ + g(u) = 0, (2.13)

with a smooth function g :R →R which in our case reads

g(u) = −1

2
u2 − u + A.

Since A > 0, there are two distinct roots, say u1 = −1 − √
1 + 2A and u2 = −1 + √

1 + 2A. Around u2, one has the periodic
orbits.

3. Comments

• Solution (2.11) defined for all L ∈ (0,2π) is an analog of a(1 − cos x), which solves linearized (1.3) completed by
(2.3)–(2.5) with L = 2π and an arbitrary a ∈R.

• In contrast to the linear case, the L2-norm of φ cannot be “small” for small L > 0, as well as its amplitude.
• The periodicity of φ can be used to put forward explicit solutions related to the initial value problem (2.2)–(2.5) whose

length L belongs to the critical set N in (1.4). In fact, in Theorem 1 the length of the interval must belong to the open
set (0,2π). So, for problem posed on [0,2π ], say, we can consider L = π (see Fig. 2) in order to obtain π -periodic
solutions. The required result is determined since every L-periodic function is also nL-periodic, for all n ∈N.

• We appreciate very much fruitful and motivating comments of Lionel Rosier, as well as the comments of the Reviewer.
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