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Let A be a matrix whose columns X1, . . . , XN are independent random vectors in R
n .

Assume that p-th moments of 〈Xi,a〉, a ∈ Sn−1, i � N , are uniformly bounded. For p > 4,
we prove that with high probability A has the Restricted Isometry Property (RIP) provided
that Euclidean norms |Xi | are concentrated around

√
n and that the covariance matrix is

well approximated by the empirical covariance matrix provided that maxi |Xi | � C(nN)1/4.
We also provide estimates for RIP when Eφ(|〈Xi,a〉|) � 1 for φ(t) = (1/2)exp(tα), with
α ∈ (0,2].

© 2014 Published by Elsevier Masson SAS on behalf of Académie des sciences.

r é s u m é

Soit A une matrice dont les colonnes X1, . . . , XN sont des vecteurs indépendants de R
n .

On suppose que les moments d’ordre p des 〈Xi,a〉, a ∈ Sn−1, 1 � i � N sont uniformément
bornés pour p > 4. On démontre que si les normes euclidiennes des |Xi | se concentrent
autour de

√
n, la matrice A vérifie une propriété d’isométrie restreinte avec grande

probabilité et que si maxi |Xi | � C(nN)1/4, la matrice de covariance empirique est une
bonne approximation de la matrice de covariance. On démontre aussi une propriété
d’isométrie restreinte quand Eφ(|〈Xi,a〉|) � 1 pour tout a ∈ Sn−1, 1 � i � N avec φ(t) =
(1/2)exp(tα) et α ∈ (0,2].

© 2014 Published by Elsevier Masson SAS on behalf of Académie des sciences.
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1. Introduction

Our two main results go in two parallel directions: the Restricted Isometry Property abbreviated as RIP and a question
of Kannan–Lovász–Simonovits about an approximation of a covariance matrix by empirical covariance matrices referred to
below as KLS problem.

In this note, X1, . . . , XN denote independent random vectors in R
n satisfying for some function φ

∀1 � i � N ∀a ∈ Sn−1
Eφ

(∣∣〈Xi,a〉∣∣)� 1. (1)

We will focus on two choices of the function φ: φ(t) = t p , with p > 4, or φ(t) = (1/2)exp(tα), with α ∈ (0,2]. The n × N
matrix whose columns are X1, . . . , XN will be denoted by A. As usual, C , C1, . . . , c, c1, . . . will always denote absolute
positive constants, whose values may change from line to line.

2. Restricted Isometry Property (RIP)

We first recall the definition of the RIP, which was introduced in [6], in order to study the exact reconstruction problem
by �1 minimization. It is noteworthy that the problem of reconstruction can be reformulated in terms of convex geometry,
namely in terms of neighborliness of the symmetric convex hull of X1, . . . , XN , as was shown in [7].

Let T be an arbitrary n × N matrix. For 1 � m � N , the isometry constant of T is defined as the smallest number
δm = δm(T ) satisfying

(1 − δm)|z|2 � |T z|2 � (1 + δm)|z|2, for z ∈R
N with

∣∣supp(z)
∣∣ � m. (2)

Let δ ∈ (0,1). The matrix T is said to satisfy the RIP of order m with parameter δ if 0 � δm(T ) < δ.
Returning to the vectors X1, . . . , XN (independent and satisfying (1)) the concentration of |Xi |’s around their average is

controlled by the function

P (θ) := P

(
max
i�N

∣∣∣∣ |Xi|2
n

− 1

∣∣∣∣� θ

)
for θ ∈ (0,1). (3)

Note that in order to have RIP, we need P (θ) < 1, as the maximum under the probability equals to δ1(A/
√

n), which is less
than or equal to δm(A/

√
n).

Conditions saying that a random matrix satisfies RIP were investigated in many works. We refer to [8] and references
therein. In [3] the authors studied the model when a random matrix consists of independent columns. It was proved that if
Xi ’s are centered of variance 1 and satisfy assumption (1) with φ(t) = (1/2)exp(tα), α � 1, then A satisfies RIP with high
probability. However, due to technical reasons, the case α < 1 was left open. Moreover, it was not clear if RIP can hold
under assumptions on moments of Xi ’s. In this note, we show that A satisfies RIP not only in the case α < 1, but also when
the marginals of Xi ’s satisfy moments condition only, that is condition (1) with φ(t) = t p , p > 4. Note that in view of a
result by Bai, Silverstein and Yin [5], it seems that one cannot expect similar bounds when p < 4.

Theorem 1. Case 1. Let p > 4 and φ(t) = t p . Let 0 < ε < min{1, (p − 4)/4} and 0 < θ < 1. Assume that 28/(εθ) � N �
cθ(cεθ)p/2np/4 and set

m =
[

C(ε, p)θ2p/(p−4−2ε)n

(
N

n

)−2(2+ε)/(p−4−2ε)]
.

Case 2. Let φ(t) = (1/2)exp(tα). Assume that 8/θ � N � cθ exp((1/2)(cθ
√

n)α) and set

m = [
C−2/αθ2n

(
ln

(
C2/α N/

(
θ2n

)))−2/α]
.

In both cases, we have P(δm(A/
√

n) � θ) � 1 − 2−9θ − P (θ/2).

3. Kannan–Lovász–Simonovits problem (KLS)

Let Xi ’s and A be as above and assume additionally that Xi ’s are identically distributed as a centered random vec-
tor X . KLS problem asks how fast the empirical covariance matrix T := (1/N)A A� converges to the covariance matrix
Σ := (1/N)EA A� (originally it was asked about so-called log-concave random vectors). In particular, is it true that with
high probability, the operator norm ‖T − Σ‖ � ε‖Σ‖ for N being proportional to n? The corresponding important question
in Random Matrix Theory is about the limit behavior of smallest and largest singular values. In the case of Wishart matrices,
that is when the coordinates of X are i.i.d. random variables with finite fourth moment, the Bai–Yin theorem [4] states that
the limits of minimal and maximal singular numbers of T are (1 ±√

β)2 as n, N → ∞ and n/N → β ∈ (0,1). Moreover, it is
known [5] that boundedness of fourth moment is needed in order to have the convergence of the largest singular value. The
asymptotic non-limit behavior (also called “non-asymptotic” in Statistics), i.e., sharp upper and lower bounds for singular
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values in terms of n and N , when n and N are sufficiently large, were studied in several works. To keep the notation more
compact and clear we set

M := max
i�N

|Xi|, S := sup
a∈Sn−1

∣∣∣∣∣
1

N

N∑
i=1

(〈Xi,a〉2 −E〈Xi,a〉2)
∣∣∣∣∣.

Note that the bound S � ε is equivalent to bounds 1 ± ε for minimal/maximal singular values. For Gaussian matrices, it is
known that singular values satisfy with probability close to one

S := sup
a∈Sn−1

∣∣∣∣∣
1

N

N∑
i=1

(〈Xi,a〉2 −E〈Xi,a〉2)
∣∣∣∣∣ � C

√
n/N. (4)

In [1,2] the same estimates were obtained for a large class of random matrices, which in particular does not require that
entries of the columns are independent or that Xi ’s are identically distributed. In particular it solves the original KLS
problem. More precisely, under assumptions that Xi ’s satisfy condition (1) with φ(t) = et/2 and that M � C(Nn)1/4 with
high probability (both conditions hold for log-concave vectors). Of course, in view of Bai–Yin theorem, the question raises
if one can substitute the function φ(t) = et/2 with the function φ = t p for the “right” restriction p � 4. The first attempt in
this direction was done in [10], where the bound S � C(p, K )(n/N)1/2−2/p(ln ln n)2 was obtained for every p > 4 provided
that M � K

√
n. Clearly, ln ln n is a “parasitic” term, which, in particular, does not allow one to solve the KLS problem

with N proportional to n. Very recently, the “right” upper bound S � C(n/N)1/2 was proved for p > 8 provided that M �
C(Nn)1/4 [9]. The purpose of our note is to show that one can solve the KLS problem in the case p > 4. Thus only the case
p = 4 is left open.

Theorem 2. Let 4 < p � 8 and φ(t) = t p . Let ε ∈ (0,1) and γ = p − 4 − 2ε. Then

S � C

(
1

N
M2 + C(p, ε)

(
n

N

)γ /p)
,

with probability larger than 1 − 8e−n − 4ε−p/2 max{N−3/2,n−(p/4−1)}.

In particular, Theorem 2 implies that if M � C1(p, ε)nγ /(2p)N1/2−γ /(2p) with large probability, then S � C2(p, ε)(n/N)γ /p ,
with large probability.

Proofs of both theorems are based on estimates for fundamental parameters of sequences of independent random vectors.
Let 1 � k � N and let X1, . . . , XN be random vectors in R

n . We define Ak and Bk by

Ak := sup
a∈S N−1

|supp(a)|�k

∣∣∣∣∣
N∑

i=1

ai Xi

∣∣∣∣∣ and B2
k := sup

a∈S N−1

|supp(a)|�k

∣∣∣∣∣
∣∣∣∣∣

N∑
i=1

ai Xi

∣∣∣∣∣
2

−
N∑

i=1

a2
i |Xi |2

∣∣∣∣∣. (5)

The main technical result gives estimates for Ak and Bk .

Theorem 3. Let X1, . . . , XN be independent random vectors in R
n satisfying (1). Let p > 4, σ ∈ (2, p/2), α ∈ (0,2), t > 0 and λ � 1.

Define additional parameters M1 and β in two cases.
Case 1. φ(x) = xp . We assume that λ� p and set

M1 := C1(σ ,λ, p)
√

k

(
N

k

)σ/p

and β := C2(σ ,λ)N−λ + C3(σ ,λ)
N2

t p
.

Case 2. φ(x) = (1/2)exp(xα). Assume that λ > 2 and set

M1 := (Cλ)1/α
√

k

(
ln

N

k
+ 1

α

)1/α

and β := 4N−λ + N2

2 exp((2t)α)
.

In both cases, assume that β < 1/32. Then with probability at least 1 − √
β one has

Ak � (1 − 4
√

β)−1(M + 18
√

t
√

M + M1)

and

B2
k � (1 − 4

√
β)−2(M2 + (730t + M1)M + 2M2

1

)
.
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Combining definitions (2), (3) and (5), we see that the RIP is controlled by Bm and P (θ), and that Theorem 1 immediately
follows from Theorem 3, with an appropriate choice of parameters (σ = 2 + ε).

The proof of Theorem 2 requires several steps. Symmetrization and use of formulas for sums of k smallest order statistics
of independent non-negative random variables with heavy tails reduce the problem of estimating S with large probability
to estimates for Ak given in Theorem 3.

The proof of Theorem 3 is based on the study of suprema of bilinear forms of independent random vectors as developed
in [9]. Let X1, . . . , XN be independent random vectors in R

n . We let for 1 < k � N and I ⊂ {1, . . . , N},

Q k(I) = sup
E⊂{1,...,N}

|E|�k

sup
a∈B E

2

〈 ∑
i∈E∩I

ai Xi,
∑

j∈E∩Ic

a j X j

〉
. (6)

It turns out that if the Xi ’s satisfy (1) for φ(x) = xp (p > 4), then there is a recursive inequality for Q k(I): given ε ∈ (0,1/2),
γ ∈ (1/2,1), and any t > 0, we have, with large probability,

Q k(I) �
Q [γ k](I) + t Ak

1 − 2ε
. (7)

Here ε represents the size of an ε-net in B E
2 , over all E of dimension � k, so it naturally appears in the estimate of

probability. Iterating (7) we get an upper bound of the form Q k(I) � C(tM + M1 Ak). This in turn leads to the required
upper bounds by methods already used in earlier papers (see e.g., [1,3,9]).
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