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Some simple conditions on positive operators A and K ensure that A can be written as a
series in the unitary orbit of K .
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r é s u m é

Des conditions simples sur les opérateurs positifs A et K assurent que A s’écrit comme
une série dans l’orbite unitaire de K .

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Sums in a unitary orbit

A natural relation on operators (bounded linear operators on a fixed separable, real or complex, infinite-dimensional
Hilbert space H) is the unitary equivalence: A � B , meaning that A = U BU ∗ for some unitary operator U , i.e., A and B
have the same unitary orbit. For positive operators (self-adjoint operators with nonnegative spectra), we will prove the
following decomposition in a unitary orbit. An operator T is called nonsingular if ker T = 0. If ‖T h‖ < ‖h‖ for all nonzero
h ∈H, then T is called a strict contraction. The essential norm of T is denoted by ‖T ‖e and its essential spectrum by Spe(T ).

Theorem 1.1. Let A be a nonsingular positive operator such that ‖A‖e � 1 and let K �= 0 be a positive strict contraction such that
0 ∈ Spe(K ). Then, there exists a decomposition

A =
∞∑
j=1

K j

where K j � K for each j ∈N
∗ .
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The assumption 0 ∈ Spe(K ) is necessary: otherwise, there would exist a projection E with a range of finite codimension
and a scalar s > 0, for instance s = min{t ∈ Spe(K )}/2, such that K � sE , hence ‖∑m

j=1 K j‖ � ms → ∞ as m → ∞. The
condition ‖A‖e � 1 is obviously necessary to ensure that the theorem holds for any positive strict contraction K with 0 in
the essential spectrum, including the case of ‖K‖e = 1. The theorem claims that this condition is also sufficient.

Of course, the series in the theorem refers to the convergence in the strong operator topology; norm convergence cannot
hold. Relaxing strong convergence to weak convergence would lead to the same statement since for an increasing sequence
of positive operators, the three properties “weakly convergent”, “strongly convergent”, “bounded” are equivalent (Vigier’s
theorem).

The proof of the theorem relies on our recent note [1] where a similar statement is obtained for the Murray–von
Neumann equivalence on positive operators: A ∼ B if A = T T ∗ and B = T ∗T for some operator T . The relation ∼ is weaker
than �, though coinciding on finite-rank positive operators. Thus this work is a continuation of [1] and an underlying tool
is a matrix decomposition from [2, Lemma 3.4]. As explained in [1], this tool is not available in the operator algebra setting;
however, it seems natural to propose the following conjecture.

Conjecture 1.2. Let A, K be two positive operators in a type-II∞ or -III factor M. If A, K meet the assumptions of the theorem, then
the conclusion holds with the unitary equivalence in M. (In a type-III factor, ‖ · ‖e := ‖ · ‖, and in a type II∞ factor, ‖ · ‖e is defined via
“compact” perturbations in M.)

2. Main steps of the proof of Theorem 1.1

The question “Which operators are a strong sum of projections?” is natural, and a detailed study is given by Kaftal, Ng
and Zhang [4], improving an earlier work of Dykema et al. [3]. Considering contractions in the same ∼-equivalence class
rather than projections was the purpose of [1]. The main result of [1] essentially contains the following lemma, implicit
in [3] in case of a projection B . A contraction B means ‖Bh‖� ‖h‖ for all h ∈H.

Lemma 2.1. Let A be a positive operator such that ‖A‖e > 1 and let B �= 0 be a positive contraction. Then, there exists a decomposition

A =
∞∑
j=1

B j

where B j ∼ B and 0 ∈ Spe(B j) for each j ∈ N
∗ .

Proof. From [1], the decomposition holds with B j ∼ B , and it remains to check that we can assume 0 ∈ Spe(B j), j ∈ N
∗ .

Split A as a direct sum A = A1 ⊕ · · · ⊕ Ak ⊕ · · · , corresponding to a decomposition of H in invariant subspaces of A, such
that ‖Ak‖e = ‖A‖e for all k ∈N

∗ . So, by [1], regarding Ak as an operator on H, we have a strong sum decomposition

Ak =
∞∑
j=1

B(k)
j

where B(k)
j ∼ B , j,k ∈ N

∗ . As dim ker B(k)
j = ∞, we have 0 ∈ Spe(B(k)

j ). Relabeling the double sequence {B(k)
j } as a simple

sequence {B j} completes the proof. �
To derive Theorem 1.1 from Lemma 2.1, we need some auxiliary lemmas. The two next ones are elementary.

Lemma 2.2. Let A be an invertible positive operator such that ‖A‖e > 1. Then, there exists a family of invertible positive operators
{An}∞n=1 such that

A =
∞∑

n=1

An

and ‖An‖e > 1 for each n ∈ N
∗ .

Given a positive operator A and a scalar t > 0, the inequality A � t means that A � t I , where I is the identity.

Proof. We need a simple fact: if A′ is a positive operator on an infinite-dimensional Hilbert space H′ , A′ � s for some s > 0,
then there exists a family of mutually orthogonal infinite projections {Q n}∞n=1 summing up to the identity on H′ such that
A′ Q n = Q ′

n A for each n ∈ N
∗ (if the spectrum of A is finite, then some projections Q n are not spectral projections of A′).

Since ‖A‖e > 1 and A is invertible, there exists t > 0 such that ‖A‖e � 1 + 2t and A � 2t . Let P be a spectral projection
of A such that A P � (1 + t)P , rankP = ∞. The above fact, with A′ = A P and H′ = P (H), shows that there exists a family
{Pn}∞ of mutually orthogonal infinite projections such that
n=1
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P =
∞∑

n=1

Pn

and A Pn = Pn A for each n ∈ N
∗ . Define, for all n ∈ N

∗ , Bn := Pn + t2−n I . Hence each Bn is invertible and satisfies ‖Bn‖e > 1.
Furthermore,

∞∑
n=1

Bn = P + t I � A.

Setting, for all n � 2, An := Bn , and for n = 1,

A1 = B1 +
(

A −
∞∑

n=1

Bn

)

completes the proof. �
Lemma 2.3. Fix ε > 0 and two positive operators K ∼ L. If 0 ∈ Spe(K ) and 0 ∈ Spe(L), then there exists a positive operator M � K
such that ‖L − M‖ < ε.

Proof. By assumption L = V K V ∗ , where V is a partial isometry on H which can be regarded as an onto isometry between
the support subspaces H� ker K and H� ker L.

Since 0 belongs to the essential spectra, for all ε > 0, the spectral subspaces of K and L corresponding to the interval
[0, ε), denoted by Sε(K ) and Sε(L) respectively, have infinite dimension. We have two direct sum decompositions,

H = Sε(K ) ⊕ S⊥
ε (K ) = Sε(L) ⊕ S⊥

ε (L)

and V induces an isometry from S⊥
ε (K ) onto S⊥

ε (L). Writing K = K −
ε + K +

ε , where K −
ε is the compression of K onto Sε(K )

and K +
ε is the compression of K onto S⊥

ε (K ), and similarly L = L−
ε + L+

ε , we have L+
ε = V K +

ε V ∗ . We may extend the
isometry V : S⊥

ε (K ) → S⊥
ε (L) to a unitary U on H, by picking any onto isometry between Sε(K ) and Sε(L). We then have:∥∥U K U∗ − L

∥∥ = ∥∥V K +
ε V ∗ + U K −

ε U∗ − (
L+
ε + L−

ε

)∥∥ = ∥∥U K −
ε U∗ − L−

ε

∥∥� 2ε,

so replacing ε by ε/2 and setting M = U K U∗ yields the statement of the lemma. �
Lemma 2.4. Let A be an invertible positive operator such that ‖A‖e > 1 and let K �= 0 be a positive contraction such that 0 ∈ Spe(K ).
Then, there exist ε > 0 arbitrarily small and some operators M j � K , for each j ∈ N

∗ , such that

3ε � A −
∞∑
j=1

M j � ε.

Proof. Take ε > 0 small enough to have A − 2ε � 0 and ‖A − 2ε‖e > 1. By Lemma 2.1,

A − 2ε =
∞∑
j=1

L j (2.1)

where L j ∼ K and 0 ∈ Spe(L j) for each j ∈ N
∗ . By Lemma 2.3, we have M j � K such that

‖L j − M j‖ < ε2− j (2.2)

for all j ∈ N
∗ . Combining (2.1) and (2.2) we obtain

A − 2ε = E +
∞∑
j=1

M j

where the norm convergent series

E :=
∞∑
j=1

(L j − M j)

is self-adjoint and satisfies ‖E‖ < ε. Hence
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A −
∞∑
j=1

M j = 2ε + E

satisfies the claimed two bounds. �
Proof of Theorem 1.1. I. We first assume ‖A‖e > 1 and consider two cases.

(1) A is invertible. By Lemma 2.2, we have a series of positive operators

A =
∞∑

n=1

An

where An is invertible, say An � αn > 0, and ‖An‖e > 1 for all n ∈ N
∗ . We then build up a sequence of positive operators

{Rn}∞n=1 as follows.

• By Lemma 2.4 applied to A1 with 0 < ε < min{α1,2−1}, we define R1 such as

A1 =
( ∞∑

j=1

M(1)
j

)
+ R1

where 3 min{α1,2−1}� R1 � 0 and M(1)
j � K for each j ∈N

∗ .
• Assuming that R1, . . . , Rm−1 have been built up, we choose Rm by applying Lemma 2.4 to Rm−1 + Am with 0 < ε <

min{αm,2−m},

Rm−1 + Am =
( ∞∑

j=1

M(m)
j

)
+ Rm

where 3 min{αm,2−m}� Rm � 0 and M(m)
j � K for each j ∈N

∗ .

Therefore, we have:

A = A1 + A2 + · · · + Am + · · ·

=
( ∞∑

j=1

M(1)
j

)
+ R1 + A2 + · · · + Am + · · ·

=
( ∞∑

j=1

M(1)
j

)
+

( ∞∑
j=1

M(2)
j

)
+ R2 + A3 + · · · + Am + · · ·

=
( ∞∑

j=1

M(1)
j

)
+

( ∞∑
j=1

M(2)
j

)
+ · · · +

( ∞∑
j=1

M(m)
j

)
+ Rm + · · · .

Since ‖Rn‖ → 0 as n → ∞ it follows that

A =
∞∑

n=1

( ∞∑
j=1

M(n)
j

)
.

Relabeling the double sequence {M(n)
j } as a simple sequence {K j} completes the proof.

(2) A is non-invertible. The proof easily follows from the invertible case. If K has a finite rank, this is known by [1]. If
K has an infinite rank, split is as K = C1 ⊕ · · · Cn ⊕ · · · with respect to a decomposition of infinite-dimensional K -invariant
subspaces H = H1 ⊕ · · ·Hn ⊕ · · · , with all Cn �= 0. Split also A = A1 ⊕ · · · An ⊕ · · · with respect to a decomposition of
A-invariant subspaces H =H′

1 ⊕ · · ·H′
n ⊕ · · · such that, regarded as an operator on H′

n , An is invertible (recall A is nonsin-
gular) and ‖An‖e > 1 for all n. By using a unitary V :H →H such that V (H′

n) =Hn we have for each n a pair of operators
(V An V ∗, Cn) on Hn which satisfies the assumption of the invertible case. We thus obtain a series for each pair (V An V ∗, Cn)

summing up to (V An V ∗) with general term unitary equivalent to Cn and hence obtain via direct sum a series decomposing
V AV ∗ in the unitary orbit of K . This proves case (2).

II. Now assume ‖A‖e = 1. If ‖K‖ < 1, some scalar multiples of A, K meet the above cases, hence the theorem holds.
If ‖K‖ = 1, then K does not attain its norm and we can split K = C1 ⊕ · · · Cn ⊕ · · · , with respect to a decomposition of
infinite-dimensional K -invariant subspaces, where 0 < ‖Cn‖ < 1 for all n. Splitting also A = A1 ⊕ · · · An ⊕ · · · , with respect
to a decomposition of A-invariant subspaces, where ‖An‖e = 1 for all n, and arguing as in case (2) completes the proof. �
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3. Some special cases

Corollary 3.1. Let A, K be two nonzero positive operators.

1. A is not compact if and only if there exist λ ∈ (0,1] and a series whose terms are ∼-equivalent to λA and summing up to A.
2. If A, K have purely continuous spectra, 0 ∈ Sp(K ) and ‖A‖ � ‖K‖, then there exists a series whose terms are in the unitary orbit

of K and summing up to A.
3. If A, K have numerical ranges (0,α) and (0, κ) respectively, then, α � κ if and only if there exists a series whose terms are in the

unitary orbit of K and summing up to A.
4. If A does not attain its norm, there exists a series whose terms are ∼-equivalent to A and summing up to A. If further 0 ∈ Spe(A),

this holds for the �-equivalence.
5. If K is a strict contraction and 0 ∈ Spe(K ), then there exists a sequence of projections {P j}∞j=1 on a larger space H′ ⊃H, summing

up to the identity on H′ , whose compressions (P j)H are in the unitary orbit of K for all j ∈ N
∗ .

Statements 1–4 may be derived from Theorem 1.1 (the first statement also follows from [1]). The fifth statement follows
from Naimark’s Dilation Theorem and Theorem 1.1 with A as the identity on H. Theorem 1.1 with A as the identity can
be stated as: Given any positive strict contraction K with 0 in its essential spectrum, there exists a POVM (positive operator valued
measure; i.e., a sequence of positive operators summing up to the identity) whose terms are all unitarily equivalent to K . Naimark’s
theorem asserts that such a POVM can be lifted to a total sequence of mutually orthogonal projections on a larger space.
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