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We consider the mean field equation on two-dimensional annular domains, and prove that
if P1 and P2 are two blowup points of a blowing-up solution sequence of the equation,
then we must have P1 = −P2.
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r é s u m é

Nous considérons l’équation de champ moyen sur les domaines annulaires à deux
dimensions, et prouvons que, si P1 et P2 sont deux points d’explosion, alors nous devons
avoir P1 = −P2.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

In this paper we consider the problem

−�u = λ
eu∫

Ω
eudx

in Ω, u = 0 on ∂Ω, (1)

where Ω is a smooth bounded domain in R
2 and λ > 0 is a parameter. Eq. (1) is known as the mean field equation

and is considered to have relations with various fields of mathematical physics, such as Onsager’s vortex theories, Chern–
Simons–Higgs gauge theory, and so on. The interested readers should refer to the books by Tarantello [15], Yang [16], and
the references therein. The possible blowing-up or non-compactness for a solution sequence of the problem have attracted
many authors for more than two decades, and many efforts have been devoted to study such a critical phenomenon.

Now, thanks to the works by [14,3] and [13], we have the following description of the blowing-up solution sequences.
Let un be a sequence of solutions to (1) for λ = λn such that ‖un‖L∞(Ω) is not bounded from above, while λn = O (1)
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as n → ∞. Then there exists a subsequence λn and a set S = {a1, · · · ,al} with ai ∈ Ω , such that λn → 8π l, l ∈ N, and
λn

eun∫
Ω eun dx

⇀ 8π
∑l

i=1 δai in the sense of measures. Moreover, each ai ∈ S must satisfy the condition

1

2
∇R(ai) −

l∑
j=1, j �=i

∇xG(ai,a j) = 0 (i = 1,2, · · · , l), (2)

where G = G(x, y) is the Green function with pole y ∈ Ω subject to the Dirichlet boundary condition: −�xG(x, y) = 2πδy
in Ω , G(x, y)|x∈∂Ω = 0, and R is the Robin function defined as R(y) = limx→y(log |x − y|−1 − G(x, y)). Therefore, the rela-
tion (2) can be considered as a characterization of the location of blowup points for (1).

On the other hand, several existence results of l-points blowing-up solutions to (1) have been found by several authors,
see [8,7]. Their results can be summarized as follows.

Let l ≥ 1 be an integer and set � = {(x1, · · · , xl) ∈ Ω l | xi = x j for some i, j ∈ {1, · · · , l}}, where Ω l ⊂ R
2l denotes an l-time

products of Ω . Define F : Ω l \ � → R as

F(ξ1, · · · , ξl) =
l∑

i=1

R(ξi) −
∑
i �= j

1≤i, j≤l

G(ξi, ξ j),

here, we agree that F(ξ) = R(ξ) for ξ ∈ Ω when l = 1. Note that the condition ∇(ξ1,···,ξl)F(a1, · · · ,al) = 0 is equivalent
to (2) for (a1, · · · ,al) ∈ Ω l . By these notations, let (a1, · · · ,al) ∈ Ω l \ � be a “stable” critical point [8], or a “nontrivial”
critical point [7] of F , that is, (a1, · · · ,al) satisfies (2) and some additional “stability” or “nontriviality” condition is satisfied.
Then there exists a sequence of solutions blowing up exactly at S = {a1, · · · ,al}. In particular, if the domain is not simply
connected, there always exists a sequence of blowing-up solutions which blows up at l points on the domain for any l ∈ N.
Contrary to the above, we do not have any blowing-up solution sequence with multiple (l ≥ 2) blow up points, if the domain
is convex. This nonexistence of multiple blow up points holds true for several nonlinear problems other than (1), see [9].
The relationship between the location of blowup points and the geometry of the domain seems to be an interesting subject.

In this note, we turn to the study of the location of blowup points for the mean field equation (1). We concentrate to
the case when Ω is an annulus. In this case, C.C. Chen and C.S. Lin [5] showed the following:

Theorem 1.1. (See [5, Theorem 1.4].) Let {un} be a solution sequence to (1) for λ = λn with λn → 16π such that un blows up at two
points P1 and P2 on the annulus, Let P1,n and P2,n be the two local maximum points near P1 and P2 respectively, then P1,n, P2,n
and the origin form a straight line ln and un is symmetric with respect to the line ln for n large. Consequently, P1, P2 and the origin are
located on a same line.

The proof of Theorem 1.1 is done by the method of rotating planes, which is applicable to other kinds of nonlinear elliptic
equations, see for example [12]. An analogous result for problems involving the critical Sobolev exponent was obtained
in [4].

Theorem 1.1 leaves open the question of whether the blow up points P1 and P2 are anti-symmetric, i.e.

P1 = −P2. (3)

In this note, by using the characterization of blowup points (2) and the explicit form of the Green function on an annulus
derived by D.M. Hickey [10,11], we show (3).

Theorem 1.2. Let {un} be a sequence of solutions to (1) for λ = λn with λn → 16π such that un blows up at two points P1 and P2 on
the annulus, then we have P1 = −P2 .

Next we compute the value of |P1| = |P2|.

Theorem 1.3. Define r0 = |P1| = |P2| where P1, P2 ∈ A = {a < |x| < a} are two blowup points. Then r0 is the unique solution of the
equation

2
log(r/b)

log(a/b)
− 1

2
=

∞∑
m=1

1

b2m − a2m

(
r2m − (ab)2mr−2m)(

(−1)m + 1
)

(4)

for r ∈ (a,b).

The explicit form of the Dirichlet Green function on a two-dimensional annulus can be seen in several papers from the
literature—see, for example, [6,1,2]. Most of them use the Weierstrass doubly periodic functions. We find that the Fourier
expansion of the Green function is convenient to our analysis.
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2. Proof of Theorem 1.2

Let A = {x ∈ R
2 | a < |x| < b} be a two-dimensional annulus. Then the Green function on A is explicitly written as follows.

Proposition 2.1 (Hickey’s formula). (See [10].) Let G A = G A(x, y) be the Green function on A with pole y ∈ A: −�xG A(x, y) = 2πδy
in A, G A(x, y)|x∈∂ A = 0. Then we have

G A(x, y) = − log |x − y| + A0(y) + B0(y) log |x| −
∞∑

m=1

1

m

(
Am(y)|x|m + Bm(y)|x|−m)

cosm(θ − θy), (5)

where x = (x1, x2) = (|x| cos θ, |x| sin θ), y = (|y| cos θy, |y| sin θy), and

A0(y) = log b
log(a/|y|)
log(a/b)

, B0(y) = log(|y|/b)

log(a/b)
,

Am(y) = |y|m − ( a2

|y| )
m

b2m − a2m
, Bm(y) = a2m(( b2

|y| )
m − |y|m)

b2m − a2m
. (6)

As a corollary, we have:

Corollary 2.1. The Robin function on the annulus A = {a < |x| < b} ⊂R
2 is

R A(y) = − (log |y| − log b)2

log(a/b)
− log b +

∞∑
m=1

1

m

1

b2m − a2m

(|y|2m − 2a2m + (ab)2m|y|−2m)
. (7)

Note that R A is a radial function on A, as it was stated in [5, Lemma 3.3].
Also using the fact ∇x = x

r
∂
∂r + x⊥

r2
∂
∂θ

where r = |x|, x⊥ = (−x2, x1) for x = (x1, x2), we obtain the formula for the gradients
of G A and R A as follows:

Corollary 2.2. We have

∇xG A(x, y) = − (x − y)

|x − y|2 + B0(y)
x

|x|2 − x

|x|
∞∑

m=1

(
Am(y)|x|m−1 − Bm(y)|x|−m−1) cosm(θ − θy)

+ x⊥

|x|2
∞∑

m=1

(
Am(y)|x|m + Bm(y)|x|−m)

sin m(θ − θy), (8)

and

1

2
∇R A(y) = − log(|y|/b)

log(a/b)

y

|y|2 +
∞∑

m=1

1

b2m − a2m

(|y|2m−1 − (ab)2m|y|−2m−1) y

|y| . (9)

Now, we prove Theorem 1.2 by direct calculations.

Proof of Theorem 1.2. Let P1, P2 ∈ A, P1 �= P2 be two blowup points for a blowing-up solution sequence {un} to (1). Since
Theorem 1.1 holds, the only thing we have to prove Theorem 1.2 is that |P1| = |P2|. For that purpose, we will exploit the
characterization of blowup points (2). In this case, it reads that

1

2
∇R A(P1) = ∇xG A(P1, P2),

1

2
∇R A(P2) = ∇xG A(P2, P1), (10)

which implies

1

2
∇R A(P1) · P1 = ∇xG A(P1, P2) · P1,

1

2
∇R A(P2) · P2 = ∇xG A(P2, P1) · P2. (11)

By using the formulae (8), (9), we can write Eqs. (11) as

−B0(P1) +
∞∑

m=1

1

b2m − a2m

(|P1|2m − (ab)2m|P1|−2m)

= − (P1 − P2) · P1

|P1 − P2|2 + B0(P2) −
∞∑(

Am(P2)|P1|m − Bm(P2)|P1|−m)
cosm(θP1 − θP2), (12)
m=1
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and

−B0(P2) +
∞∑

m=1

1

b2m − a2m

(|P2|2m − (ab)2m|P2|−2m)

= − (P2 − P1) · P2

|P2 − P1|2 + B0(P1) −
∞∑

m=1

(
Am(P1)|P2|m − Bm(P1)|P2|−m)

cosm(θP1 − θP2), (13)

where P1 = (|P1| cos θP1 , |P1| sin θP1 ), P2 = (|P2| cos θP2 , |P2| sin θP2 ) in polar coordinates. Inserting (6), we have

Am(P2)|P1|m − Bm(P2)|P1|−m

= 1

b2m − a2m

{|P1|m|P2|m − a2m|P1|m|P2|−m + a2m|P1|−m|P2|m − (ab)2m|P1|−m|P2|−m}
,

Am(P1)|P2|m − Bm(P1)|P2|−m

= 1

b2m − a2m

{|P1|m|P2|m − a2m|P1|−m|P2|m + a2m|P1|m|P2|−m − (ab)2m|P1|−m|P2|−m}
.

Thus, subtracting (13) from (12), we have

∞∑
m=1

1

b2m − a2m

(|P1|2m − (ab)2m|P1|−2m − |P2|2m + (ab)2m|P2|−2m)

= |P2|2 − |P1|2
|P1 − P2|2 −

∞∑
m=1

2a2m

b2m − a2m

(|P1|−m|P2|m − |P1|m|P2|−m)
cosm(θP1 − θP2).

From this, we obtain

|P2|2 − |P1|2
|P2 − P1|2 =

∞∑
m=1

|P1|2m − |P2|2m

b2m − a2m

{
1 + (ab)2m

|P1|2m|P2|2m
− 2a2m

|P1|m|P2|m cosm(θP1 − θP2)

}
. (14)

Concerning the RHS of (14), we see{
1 + (ab)2m

|P1|2m|P2|2m
− 2a2m

|P1|m|P2|m cos m(θP1 − θP2)

}

≥ 1 + (ab)2m

|P1|2m|P2|2m
− 2ambm

|P1|m|P2|m =
(

1 − (ab)m

|P1|m|P2|m
)2

≥ 0,

since a < b. Thus, if |P1| > |P2|, LHS of (14) < 0, while RHS of (14) ≥ 0, which is a contradiction. The case of |P1| < |P2|
leads to the same contradiction. This implies that |P1| = |P2| must hold, which ends the proof of Theorem 1.2. �

Now we compute the value of |P1| = |P2|.

Proof of Theorem 1.3. By inserting P2 = −P1 into the first equation of (10) and using (8), (9), we have

− log(|P1|/b)

log(a/b)

P1

|P1|2 + P1

|P1|2
∞∑

m=1

1

b2m − a2m

(|P1|2m − (ab)2m|P1|−2m)

= −1

2

P1

|P1|2 + log(|P1|/b)

log(a/b)

P1

|P1|2 − P1

|P1|2
∞∑

m=1

(−1)m

b2m − a2m

(|P1|2m − (ab)2m|P1|−2m)
,

which in turn implies

2
log(|P1|/b)

log(a/b)
− 1

2
=

∞∑
m=1

1

b2m − a2m

(|P1|2m − (ab)2m|P1|−2m){
(−1)m + 1

}
(15)

since P1 �= 0. Let f (r) = 2 log(r/b)
log(a/b)

− 1
2 for a < r < b. f is a monotonically decreasing function with f (a + 0) = 3

2 , f (b − 0) =
− 1

2 , and having a unique zero at r = b3/4a1/4. Also define

g(r) =
∞∑ 1

b2m − a2m

(
r2m − (ab)2mr−2m){

(−1)m + 1
}
.

m=1
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Since (−1)m + 1 ≥ 0 for any m ∈N, we see g is monotonically increasing with respect to r and

lim
r↓a

g(r) =
∞∑

m=1

1

b2m − a2m

(
a2m − b2m){

(−1)m + 1
} = −∞,

lim
r↑b

g(r) =
∞∑

m=1

1

b2m − a2m

(
b2m − a2m){

(−1)m + 1
} = +∞,

with having unique zero r = √
ab. Thus we have the unique r0,

√
ab < r0 < b3/4a1/4 such that f (r0) = g(r0) by the Interme-

diate Value Theorem for continuous functions. �
Remark 1. By the proof of the last theorem it follows that

√
ab < r0 < b3/4a1/4.

Remark 2. It is interesting to know what will happen when the number of blowup points is three or more: we conjecture
that if we have m blowup points on the two-dimensional annulus, then they must be located on the vertices of a regular
m-polygon. The verification of this seems difficult.
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