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We formulate the question of the existence of spatially periodic, time-periodic solutions 
for evolution equations as a fixed point problem, for certain temporal periods. We prove 
that if a certain estimate applies for the Duhamel integral, then time-periodic solutions 
cannot be arbitrarily small. This provides a partial analogue in the spatially periodic case 
of scattering results for dispersive equations on the real line, as scattering implies the 
non-existence of small-amplitude traveling waves. Furthermore, it also complements small-
divisor methods (e.g., the Craig–Wayne–Bourgain method) for proving the existence of 
small-amplitude time-periodic solutions (again, for frequencies in certain set).

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Nous exprimons le problème d’existence de solutions périodiques en temps et en espace 
d’opérateurs d’évolution sous forme de problèmes de points fixes, pour certaines périodes 
de temps. Nous prouvons que, si une certaine estimation pour l’integrale de Duhamel 
existe, alors les solutions périodiques en temps ne peuvent être arbitrairement petites. Cela 
donne des résultats analogues pour le cas de la diffusion d’ondes périodiques dans l’espace 
sur la droite réelle, puisque la diffusion implique la non-existence d’onde de petites 
amplitudes. De plus, nos résultats viennent compléter les méthodes des petits diviseurs 
(comme par exemple la méthode de Craig–Wayne–Bourgain) pour prouver l’existence de 
solutions périodiques en temps de petites amplitudes (pour des frequences dans un certain 
ensemble).

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

In this paper, we introduce a framework for proving the non-existence of time-periodic, spatially periodic solutions 
of dispersive partial differential equations. Our framework starts from the point of view of time-periodic solutions as fixed 
points of the Poincaré map. We decompose the Poincaré map, using a linear solution operator and a nonlinear mapping, and 
factoring out the linear part. We are then able to demonstrate nonexistence of time-periodic solutions if certain estimates 
are satisfied.
http://dx.doi.org/10.1016/j.crma.2014.05.003
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Since we have factored out a linear mapping, we must have a bound on the inverse of this linear mapping. We prove 
such an estimate by small divisor techniques. The result is that the relevant operator can be bounded as |k|p , where k is the 
Fourier variable, for any p > 1, for certain possible frequencies. Since the linear estimate gives a bound as |k|p , there must 
be a compensating gain in regularity from the nonlinear solution operator; this gain of regularity comes from dispersive 
smoothing estimates.

The framework we develop here is complementary to two significant lines of work in the area of dispersive partial 
differential equations. These are (a) scattering results for dispersive partial differential equations on the real line, and (b) 
existence results for time-periodic, spatially periodic waves via Nash–Moser-type small divisor methods.

There are many results in the literature on scattering for small-amplitude solutions of dispersive partial differential equa-
tions in free space, and we cannot attempt to discuss them all. We mention that a few such results are [23,6,14,22,19]. We 
will mention in detail the results of [23]. There, Strauss shows for two dispersive equations, a nonlinear Schrödinger equa-
tion and a generalized Korteweg–de Vries (KdV) equation, that all sufficiently small solutions decay in time. This implies 
the non-existence of small-amplitude coherent structures, such as traveling waves. These results, however, use in a funda-
mental way that the domain is unbounded, and it can be difficult to see an analogue on a periodic interval. The present 
results, however, do provide a partial analogue; as will be described in detail below, we demonstrate a mechanism by which 
dispersion can prevent the existence of small-amplitude coherent structures, in certain cases, on the periodic interval.

There are two primary types of proof in the literature for the existence of time-periodic, spatially periodic waves. For 
equations which happen to be completely integrable, such as the KdV equation or the Benjamin–Ono equation, it is often 
the case that explicit formulas for time-periodic solutions can be written down [9,20,1,2,25]. For more general equations, 
however, integrable systems techniques are not available, and small divisor methods of Nash–Moser type, especially as 
developed by Craig and Wayne, and further developed by Bourgain, are commonly used [24,7,4,5]. This type of method has 
been further developed for applications to water waves by Plotnikov, Toland, and Iooss [21,15], and for perturbations of the 
Benjamin–Ono equation by Baldi [3].

The contrast between the results of these two methods is stark; for completely integrable equations, continua of time-
periodic solutions are found. As shown explicitly for the Benjamin–Ono equation in [1,2,25], nontrivially time-periodic 
solutions bifurcate from traveling waves (which are trivially time-periodic), and a continuous family of such waves even-
tually terminates at a different traveling wave. For such a continuous family, the temporal period of these waves varies 
continuously, taking values in a closed interval of positive diameter. For the small-divisor results, however, the estimates 
only close when certain frequencies are discarded; thus, the typical result is that time-periodic solutions exist when the 
frequency is chosen from a set of positive measure (a Cantor set). At the frequencies in this Cantor set, the result is that 
small-amplitude time-periodic solutions exist; typical equations treated in this manner include nonlinear wave equations 
and nonlinear Schrödinger equations.

We note that these Nash–Moser-type results are silent on the question of whether better results are possible: while 
they indicate that time-periodic solutions do exist with the frequency chosen from a Cantor set, they do not indicate 
that time-periodic solutions do not exist for any of the remaining frequencies. In fact, in the cases for which we have 
complete information (the completely integrable equations), we know that time-periodic solutions do exist at a continuum 
of frequencies. The results of the present paper demonstrate how one might show that the existence results of small-divisor 
type may in fact be nearly optimal, for certain equations – the main result (Corollary 3 below) shows that for certain 
equations, dispersive smoothing estimates imply the nonexistence of small-amplitude, time-periodic solutions for certain 
frequencies. Thus, we demonstrate an avenue by which the question of existence and non-existence of small-amplitude 
time-periodic solutions can be nearly fully understood, for certain dispersive partial differential equations. We mention that 
a similar result was proved by de la Llave for nonlinear wave equations [8].

In Section 2, we explain our formulation as a fixed-point problem, and we prove a general theorem. In Section 3, we 
prove an estimate for a linear evolution, and we then find our main result as a corollary. We conclude in Section 4 with 
a discussion of the applicability of the main result to specific dispersive equations.

2. Problem formulation and a general theorem

In this section, we formulate the time-periodic solutions problem for a nonlinear equation, and for the time being, we 
proceed abstractly. Consider the evolution equation

ut = Au + Nu, (1)

where A is a linear operator and N is a nonlinear operator. Let SL be the solution operator for the related equation

vt = Av; (2)

that is, for any t ∈ R, we can write SL(t)v0 = e At v0. Let S(t) be the solution operator for Eq. (1) (starting from time zero 
and continuing until time t), and let SD(t) be the difference of S and SL: SD(t) = S(t) − SL(t). We can understand SD better 
by using the usual Duhamel formula:
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S(t)u0 = u(·, t) = SL(t)u0 +
t∫

0

SL(t − τ )N
(
u(τ )

)
dτ .

Subtracting SL(t)u0 from both sides, we see the following formula for SD:

SD(t)u0 =
t∫

0

SL(t − τ )N
(
u(τ )

)
dτ . (3)

A time-periodic solution of (1) with temporal period T corresponds to a fixed point of the Poincaré map: if u0 satisfies

u0 = S(T )u0, (4)

then u0 is the initial data for a time-periodic solution. We rewrite (4) by putting everything on one side of the equation, 
and also by using the decomposition S = SL + SD:

[(
I − SL(T )

) − SD(T )
]
u0 = 0. (5)

Here, I is the identity operator. We may continue to rewrite this, if T is a period for which (2) lacks time-periodic solutions. 
Indeed, for such a T , the linear operator I − SL(T ) has trivial kernel, and thus is invertible. We let W be the set of such 
values:

W = {
t ∈ (0,∞) : ker

(
I − SL(t)

) = {0}}.
For T ∈ W , we then factor I − SL(T ) out of (5):

(
I − SL(T )

)[
I − (

I − SL(T )
)−1

SD(T )
]
u0 = 0. (6)

We give the name K (T ) to the final operator on the left-hand side:

K (T ) = (
I − SL(T )

)−1
SD(T ).

We then see that a time-periodic solution of (1) with temporal period T ∈ W corresponds to solutions of the equation

(
I − K (T )

)
u0 = 0. (7)

If there is a function space, X, and a constant r0 > 0, such that for all x ∈ X satisfying 0 < ‖x‖X ≤ r0, we have ‖K (T )x‖X <

‖x‖X , then clearly (7) has no nontrivial solutions of size r0 or smaller. We have proven the following:

Theorem 1. Let T ∈ W be given. Let X be a Banach space, such that K (T ) : X → X. Assume there exists r0 > 0 such that for all x ∈ X
satisfying 0 < ‖x‖X ≤ r0 , ‖K (T )x‖X < ‖x‖X . Then, for any nontrivial time-periodic solution, u, of (1) with period T ,

inf
t∈[0,T ]

∥∥u(·, t)
∥∥

X > r0.

For a given T ∈ W , if we knew that (I − SL(T ))−1 were a bounded linear operator on some function space X, then in 
order to be able to apply Theorem 1, it would be sufficient to find a constant q > 1 such that for sufficiently small x, we 
have ‖SD(T )x‖X ≤ c‖x‖q

X . This is not what we will show, however, since we are unable to demonstrate that (1 − SL(T ))−1 is 
a bounded operator, from a Sobolev space to itself, for the evolution equations in which we are interested. To be precise, in 
Section 3, we will demonstrate a bound for the inverse operator which shows that the symbol of the inverse operator acts 
like |k|p for some p > 1, where k is the variable in Fourier space; thus, the inverse acts like differentiation of order p. In 
order to compensate for this, we will need to use smoothing properties of SD(T ). If we know that (I − SL(T ))−1 : X → Y is 
a bounded operator, and SD(T ) : Y → X is a bounded operator, with ‖SD(T )u0‖X ≤ c‖u0‖q

Y , for some q > 1, then this will be 
sufficient to apply Theorem 1.

3. The inverse of the linear operator

We now assume that the linearized evolution equation (linearized about zero) is, after taking the Fourier transform, F ,

Fwt(k, t) = ikrFw(k, t), (8)

for some constant, r > 0. Using this, we make an estimate of small-divisor-type for the symbol of the inverse of our operator.
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Theorem 2. For any p > 1, there exists a set W p ⊆ W of positive measure such that for all k,

∣∣F[(
1 − SL(T )

)−1]
(k)

∣∣ ≤ c|k|p .

Sketch of proof. Fix p > 1. We let ω be defined through the equation T = 2π
ω . We consider ω ∈ [1, 2], which is to say, we 

consider T ∈ [π, 2π ]. Fix k, and define Q [ω] as

Q [ω] = ∣∣(1 − eikr T )−1∣∣ = ∣∣(1 − e2π ikr/ω
)−1∣∣.

In order for Q [ω] to even be defined, we must not divide by zero; notice that we divide by zero here if and only if there 
exists n ∈N such that ω equals kr/n.

Let n∗ ∈ N be given such that ω∗ = kr

n∗ ∈ [1, 2]. We consider ω = ω∗ ± ε, for small ε. With this choice of ω, we have 
Q [ω] = |1 − cos( 2πkr

kr
n∗ ±ε

) − i sin( 2πkr

kr
n∗ ±ε

)|−1. We make the following computation:

2πkr

kr

n∗ ± ε
= 2πn∗

1 ± εn∗
kr

≈ 2πn∗ ∓ 2πεn2∗
kr

.

We then have the following:

cos

(
2πkr

kr

n∗ ± ε

)
≈ cos

(
2πn∗ ∓ 2πεn2∗

kr

)
= cos

(
2πεn2∗

kr

)
≈ 1 − 1

2

(
2πεn2∗

kr

)2

,

sin

(
2πkr

kr

n∗ ± ε

)
≈ sin

(
2πn∗ ∓ 2πεn2∗

kr

)
= ∓ sin

(
2πεn2∗

kr

)
≈ ∓2πεn2∗

kr
.

This implies Q [ω] ≈ |k|r
2πεn2∗

.

As we said above, this approximation for Q [ω] is valid as long as ε is small, and in particular, we need εn2∗|k|r � 1. Using 
our p > 1 and letting c0 > 0 be constant, we choose ε = c0|k|−(r+p) . Since n∗ is commensurate to kr , we see that this leaves 
our estimate for Q [ω] as Q [ω] ≤ c|k|p , for some constant c > 0, as long as ω /∈ [ω∗ − ε, ω∗ + ε], for any valid choice of n∗ .

Now, there are O (kr) valid choices for n∗ , so we have removed O (kr) intervals of width ε from the set of possible values 
of ω; with our choice of ε, this means we have removed a set with measure proportional to |k|−p , for our fixed value of k. 
Summing over all values of k, we see that we have removed only a set of finite measure, since p > 1 (this is the reason that 
we chose p > 1 in the beginning of the proof). By simply choosing the constant c0 to be sufficiently small, we end up with 
the set W p having positive measure. �

We can then state our main result, which follows from Theorems 1 and 2. This says that a gain of regularity on 
the Duhamel integral implies the non-existence of small-amplitude time-periodic solutions. The gain of regularity on the 
Duhamel integral will be discussed in the final section.

Corollary 3. Let SD be as above, assuming that the linear evolution operator is given by (8). Assume there exist s ∈R, p > 1, q > 1, 
and c > 0 such that for all T , SD(T ) : Hs → Hs+p , with the estimate

∥∥SD(T )u0
∥∥

Hs+p ≤ c‖u0‖q
Hs

for all sufficiently small u0 ∈ Hs. Then, any nontrivial time-periodic solutions of (1) with temporal period T ∈ W p cannot be arbitrarily 
small.

4. Discussion

Our main result, Corollary 3, shows that small-amplitude doubly periodic waves cannot exist if certain estimates are 
satisfied for the Duhamel integral. This raises the question, then, of whether the corresponding estimates for the Duhamel 
integral hold. The required estimate on the Duhamel integral is a smoothing estimate; since the inverse of the linear 
operator loses p derivatives for p > 1, we must have a gain of p derivatives in the Duhamel term. There are results in the 
literature that are similar to what is required in the present case. Specifically, for the generalized KdV equation (posed on the 
real line) and the KdV equation (posed on a periodic interval), there are smoothing results for the Duhamel integral [18,11].

The result of Linares and Scialom [18] demonstrates a gain of one derivative for the Duhamel integral, as compared to 
the initial data. The result of Erdogan and Tzirakis [11], similarly, is that the Duhamel integral gains 1 − ε derivatives, as 
compared to the initial data (for any ε > 0). In general, for a dispersive equation with dispersion relation of order r (as in (8)
above), one expects a gain of (r − 1)/2 derivatives from the effect of dispersion [17]. For equations of KdV-type, one has 
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r = 3, and thus one expects a gain of one derivative. It certainly seems no accident that the smoothing on the Duhamel 
integral demonstrated in [18] and [11] is on this same order.

Given that Linares and Scialom and Erdogan and Tzirakis have shown a gain like one derivative for the Duhamel integral 
in KdV-like equations, it seems natural to expect that with stronger dispersion, one will find a greater gain of regularity. For 
simplicity, the authors are currently focusing on the following equation, which has fifth-order dispersion:

ut + ∂5
x u = uux. (9)

The necessary smoothing result for the operator SD associated with (9) holds, and the authors’ proof of the following 
theorem will appear in a subsequent work:

Theorem 4. For sufficiently large s, there exists T > 0 such that the initial value problem (9) with u(·, 0) = u0 ∈ Hs has a unique 
classical solution u ∈ C([0, T ]; Hs). Given u0 ∈ Hs, let u1(·, t) = SL(t)u0 , for all t ∈ [0, T ]. Let u2(·, t) = u(·, t) − u1(·, t) = SD(t)u0 , 
for all t ∈ [0, T ]. Then, we conclude that u2 ∈ C([0, T ]; Hs+2).

For any interval [T1, T2] ⊆ (0, ∞), there exists δ > 0 and c > 0 such that if u0 ∈ Hs satisfies ‖u0‖Hs ≤ δ, then the above solution 
is in C([0, T2]; Hs), with the estimate ‖SD(T )u0‖Hs+2 ≤ c‖u0‖2

Hs for all T ∈ [T1, T2].

The existence theory and the final estimate are established by the energy method. The proof of smoothing follows the 
lines of the Erdogan–Tzirakis argument, but is simpler as there is a benefit to the stronger dispersion; in particular, the use 
of Bourgain spaces is avoided. Given this theorem, in light of Corollary 3, we have the following:

Corollary 5. Fix p ∈ (1, 2], and let W p and s be as above. There exists r0 > 0 such that if u is a non-constant time-periodic solution 
of (9) with temporal period T ∈ W p , then inft∈[0,T ] ‖u(·, t)‖Hs > r0 .

Finally, we remark that it seems likely that the corresponding result would hold for other equations with greater-than-
third-order dispersion. Specifically, one such equation is the Kawahara equation, ut + ∂5

x u − ∂3
x u + uux = 0, which has been 

rigorously justified as a model for water waves with surface tension [10]. Also of interest are fourth-order Schrödinger equa-
tions, such as iψt + 	ψ + |ψ |2σ ψ + ε	2ψ = 0, for σ > 0 and ε > 0, which can arise by including higher-order corrections 
when deriving Schrödinger equations from Maxwell’s equations [16,12,13]. As the referee has remarked to the authors, The-
orem 2 holds in one spatial dimension, so the corresponding results for Schrödinger equations should hold in the case of 
one spatial dimension.
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