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r é s u m é

Le but de cette contribution est de justifier mathématiquement l’obtention d’un modèle 
biphasique visqueux gérant zones libres/zones congestionnées comme limite singulière des 
équations de Navier–Stokes compressibles barotropes à l’aide d’une pression singulière 
jouant le rôle d’une barrière. Ce type de systèmes macroscopiques permettant de modéliser 
le mouvement d’une foule a été proposé dans de nombreux articles. Le lecteur interessé 
pourra se reporter, par exemple, à la revue de B. Maury [9].

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Macroscopic approaches for modelling the motion of a crowd have been recently proposed in various papers where the 
swarm is identified through a density ρ = ρ(t, x), see for instance a review paper by Maury [9]. The density is transported 
through a vector field u(t, x) that itself solves an equation expressing the variation of velocity for each individual under 
some factors. The following system is obtained

{
∂tρ + div(ρu) = 0,

∂t(ρu) + div(ρu ⊗ u) = F (ρ, u),
(1.1)
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where F is an appropriate differential operator that has to be defined depending on the applications; for instance, repul-
sive/attractive terms may be included to model congestion.

For modelling the traffic jams, some systems that mix free/congested regions have been also proposed, namely{
∂tρ + div(ρu) = 0,

∂t(ρu) + div(ρu ⊗ u) + ∇π = 0,

0 ≤ ρ ≤ ρ∗, (ρ − ρ∗)π = 0
(1.2)

for given function ρ∗ . The interested reader is referred to paper by Berthelin [1] in which the existence of solutions to 
system (1.2) was proven for ρ∗ = const., using the convergence of some special solutions, called the sticky blocks. For 
various extensions of this work (when ρ∗ depends on the velocity or on the number of lanes in the portion of the road), 
we refer to a recent work by Berthelin and Broizat [2] and the references therein.

Formal justification of system (1.2) from (1.1) with F (ρ, u) being a gradient of a specific singular pressure term has been 
given by Degond et al. in [5] (see also the proposed numerical scheme for ρ∗ = 1). Note that a more complex model than 
(1.2) has been also formally derived by these authors for collective motion (namely with the extra constraint on the velocity 
|u| = 1).

The main objective of this note is to justify mathematically the viscous version of (1.2) as a limit of the isentropic 
compressible Navier–Stokes equations. This limit will be obtained by introducing a small parameter ε in front of a singular 
pressure and by letting ε → 0. The important feature of such a system is that it preserves the constraint 0 ≤ ρε ≤ 1 for any 
ε > 0 fixed.

2. Singular compressible Navier–Stokes model and the associated free boundary system

We consider the system of compressible barotropic Navier–Stokes equations⎧⎨
⎩

∂tρ
ε + div

(
ρεuε

) = 0,

∂t
(
ρεuε

) + div
(
ρεuε ⊗ uε

) − 2 div
(
μ

(
ρε

)
D

(
uε

))
− ∇(

λ
(
ρε

)
div

(
uε

)) + ∇p1
(
ρε

) + ∇pε
2

(
ρε

) = 0
(2.1)

in a fixed bounded domain Ω .
In the above system, p1 is the barotropic pressure

p1
(
ρε

) = a
(
ρε

)α
, a ≥ 0, α > 1, (2.2)

while pε
2 is the singular pressure in the spirit of [3,6]

pε
2

(
ρε

) = ε
(
ρε

)γ
P
(
ρε

)
, γ > 1, ε > 0. (2.3)

The singular pressure P (·) ∈ C1(0, 1) is a strictly increasing function, such that

lim
ρε→ρ−∗

P
(
ρε

) = +∞ (2.4)

and ρ∗ = 1 stands for the upper threshold of the density.
We supplement system (2.1) with the following initial conditions:

ρε(t, x)|t=0 = ρε
0 (x), uε(t, x)|t=0 = uε

0(x), x ∈ Ω, (2.5)

where

0 ≤ ρε
0 ≤ 1,

∫
Ω

ρε
0 = M (2.6)

and the Dirichlet boundary conditions:

uε|∂Ω = 0.

Our concern is to investigate the limit when ε tends to zero and justify that (ρε, uε, pε
2(ρ

ε)) tends (in some sense) to 
(ρ, u, π), which satisfies the following free-boundary problem:⎧⎨

⎩
∂tρ + div(ρu) = 0,

∂t(ρu) + div(ρu ⊗ u)

− 2 div
(
μ(ρ)D(u)

) − ∇(
λ(ρ)div(u)

) + ∇p1(ρ) + ∇π = 0
(2.7)

with



D. Bresch et al. / C. R. Acad. Sci. Paris, Ser. I 352 (2014) 685–690 687
{0 ≤ ρ ≤ 1,

π ≥ 0,

(1 − ρ)π = 0.

(2.8)

Such a free-boundary system has been derived by Lions and Masmoudi [8] who were considering pγ (ρ) = aργ , with 
γ tending to +∞. The same limit has been studied in [7] with viscosities depending on the density when some surface 
tension is included. However, such a form of pressure does not guarantee the congestion constraint 0 ≤ ργ ≤ 1 for fixed γ , 
which is a problem for numerical investigation, as mentioned in the recent paper by Maury [9]. We will see that the 
pressure P defined in (2.3) plays the role of a barrier and implies that the constraint 0 ≤ ρε ≤ 1 is automatically satisfied 
for any ε > 0. This, however, asks for a special behaviour of P (·) close to 1. An important example of such barrier used, for 
instance, in Self-Organized Hydrodynamics [4,5] is of the form:

pε
(
ρε

) = ε

(
1

1
ρε − 1

)γ

= ε

(
ρε

1 − ρε

)γ

.

3. One-dimensional case

The aim of this section is to prove the global-in-time existence of regular solutions to system (2.1) when Ω = [0, L] and 
μ, λ are positive constants. We will also perform the limit passage leading to the free-boundary system (2.7)–(2.8). More 
precisely, we prove the following results:

Theorem 3.1. Let ε, μ, λ be fixed positive constants and let (u0, ρ0) ∈ H1
0(0, L) × H1(0, L) with 0 < ρ0 < 1. Assume that the singular 

pressure satisfies

P (ρ) = (1 − ρ)−β (3.1)

with β, γ > 1. Then there exists a regular solution (uε, ρε) to (2.1)–(2.4) such that∥∥ρε
∥∥

L∞(0,T ;H1(0,L))
+ ∥∥ρε

∥∥
H1(0,T ;L2(0,L))

≤ c,∥∥uε
∥∥

L2(0,T ;H1
0(0,L))

+ ∥∥uε
∥∥

L∞(0,T ;L2(0,L))
≤ c

uniformly with respect to ε and there exist constants c and C(ε) s.t.

0 < c ≤ ρε ≤ C(ε) < 1. (3.2)

Remark 3.2. The full regularity and uniqueness of this solution for ε fixed can also be proved, see Theorem 3.4 below. 
However, the proof relies on the estimates, which strongly depend on ε.

Theorem 3.3. Under the assumptions of the previous theorem, there exists a subsequence already denoted (ρε, uε, πε) s.t.

ρε → ρ in C
([0, T ] × [0, L]),

uε → u in L2(0, T ;C[0, L]),
πε = pε

2 ⇀ π in M+(
(0, T ) × (0, L)

)
, (3.3)

where (u, ρ, π) satisfies (2.7)–(2.8).

3.1. Proof of Theorem 3.1

As mentioned before, Theorem 3.1 may be obtained as a corollary of a stronger result formulated below in Theorem 3.4
by use of Lagrangian coordinates.

We drop the index ε when no confusion can arise and we define

x =
x∫

0

ρ(τ , s)ds, τ = t. (3.4)

Using (3.4) and denoting ν = 2μ + λ, system (2.1) may be transformed into the following one{
ρτ + ρ2ux = 0,

uτ − ν(ρux)x + (
p1(ρ)

)
x + (

pε
2(ρ)

)
x = 0

(3.5)

with the Dirichlet boundary conditions
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u|x=0 = u|x=M = 0

and the initial data

ρ|τ=0 = ρ0, u|τ=0 = u0, in [0, M], (3.6)

such that

0 < ρ0 < 1. (3.7)

For the above system, we will prove the following theorem.

Theorem 3.4. Assume that (u0, ρ0) ∈ H1
0(0, M) × H1(0, M) and that (3.7) is satisfied. Then system (3.5)–(3.6) possesses a global 

unique solution (ρ, u) such that

ρ ∈ L∞(
0, T ; H1(0, M)

)
, ρτ ∈ L2((0, T ) × (0, M)

)
,

ux ∈ L∞(
0, T ; L2(0, M)

) ∩ L2(0, T ; H1(0, M)
)
. (3.8)

Moreover there exist positive constants cρ, Cρ such that

0 < cρ ≤ ρε ≤ Cρ(ε) < 1. (3.9)

The local in-time solvability of system (2.1)–(2.6) with monotone pressure is a classical result, see for instance [12]. 
Therefore, in order to show global in-time existence, it is enough to prove uniform in-time estimates. This will be a purpose 
of the following paragraphs.

To deduce bounds on the density, we first test (3.5)2 by u and then by ρx
ρ and we sum the obtained expressions. This 

leads to:

sup
τ∈(0,T )

M∫
0

(
(logρ)x

)2
(τ )dx +

T∫
0

M∫
0

∣∣∣∣(pε
2

)′
(ρ)

(ρx)
2

ρ

∣∣∣∣dx dτ ≤ c. (3.10)

The lower bound is deduced from the control of the first integral, while the boundedness of the second integral clearly 
forces the upper bound (recall that β > 1).

It is then natural to expect that u is more regular than it follows from the basic energy estimate. Regularity (3.8) can be 
shown in a standard way, by testing (3.5)2 by −uxx . The proof of uniqueness is then straightforward. �

Note that (3.8) allows to back to Eulerian coordinates, since ∂th(t, x) = ∂τ h(τ , x) − u(τ , x)ρ(τ , x)∂xh(τ , x) and ∂xh(t, x) =
ρ(τ , x)∂xh(τ , x) which finishes the proof of Theorem 3.1. �
3.2. Recovering the two-phase system

In this subsection, we prove Theorem 3.3. Let us first focus on establishing the estimates that are uniform with respect 
to ε. The basic energy equality for system (2.1) in the Eulerian coordinates reads

d

dt

L∫
0

(
1

2
ρε

∣∣uε
∣∣2 + ρε

(
e1

(
ρε

) + eε
2

(
ρε

))) + ν

L∫
0

∣∣∂xuε
∣∣2 = 0 (3.11)

with e1(ρ
ε) = a

α−1 (ρε)α−1 and eε
2(ρε) = ∫ ρε

0
pε

2(s)
s2 ds. As in [8], the bound on ρeε

2(ρε) does not provide bound for pε
2

uniform with respect to ε. To solve this problem we perform a Bogovskii-type of estimate. Note that the arguments to 
conclude will be different than those in [8].

Uniform estimate of the pressure. We test the momentum equation in (2.1) by φ(t, x) = ψ(t)(
∫ x

0 ρε(t, y)dy − ρε), where 
ρε = 1

L

∫ L
0 ρε(x, t)dx and ψ(t) ∈ C∞

0 ((0, L)), we obtain:

T∫
0

ψ

L∫
0

(
p1 + pε

2

)(
ρε − ρε

)
dx dt = −

T∫
0

ψ ′
L∫

0

ρεuε

( x∫
0

ρεdy − ρε

)
dx dt

+
T∫
ψρε

L∫
ρε

(
uε

)2
dx dt + ν

T∫
ψ

L∫
ux

(
ρε − ρε

)
dx dt.
0 0 0 0
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The r.h.s. is controlled thanks to (3.11) and (3.9), thus the l.h.s. is bounded uniformly with respect to ε. We then split the 
l.h.s. into two terms:

I1 + I2 =
∫

{ρε<
ρ0+1

2 }

pε
2

(
ρε − ρε

)
dx dt +

∫
{ρε≥ ρ0+1

2 }

pε
2

(
ρε − ρε

)
dx dt ≤ c.

The integrant in I1 is far away from singularity, thus it is bounded, whence the integrant in I2 is larger than 1−ρ0
2 pε

2, which 
implies that pε

2 = εp2(ρ
ε) is bounded in L1((0, T ) × (0, L)) uniformly with respect to ε. The same conclusion can be drawn 

for pε
2ρ

ε .

Passage to the limit ε → 0. Using the Arzelà–Ascoli theorem, we prove that

ρε → ρ in C
([0, T ] × [0, L]), (3.12)

and (3.9) implies that p1(ρ
ε) → p1(ρ) strongly in C([0, T ] × [0, L]).

Thanks to the uniform bounds on the pressure, up to a subsequence, we have

pε
2

(
ρε

)
⇀ π, ρε pε

2

(
ρε

)
⇀ π1 in M+(

(0, T ) × (0, L)
)
, (3.13)

but thanks to (3.12) we may identify the second limit as

ρε pε
2

(
ρε

)
⇀ ρπ in M+(

(0, T ) × (0, L)
)
. (3.14)

Concerning the convergence of the velocity, by (3.11) we deduce that

uε ⇀ u in L2(0, T ; H1
0(0, L)

)
, uε ⇀∗ u in L∞(

0, T ; L2(0, L)
)

up to a subsequence. Therefore ρεuε ⇀ ρu in L4((0, T ) × (0, L)). In addition, (ρεuε)x is uniformly bounded in L2((0, T ) ×
(0, L)). From the momentum equation and the L1 bound on the pressure, we can assert that (ρεuε)t ∈ L1(0, T ; W −1,1(0, L)). 
Thus, an application of the generalized Aubin–Lions lemma [11] yields:

ρεuε → ρu in L2(0, T ;C[0, L]).
Hence, (3.9) and (3.12) imply strong convergence of uε , as stated in (3.3).

In order to conclude, it remains to prove that (ρ, π) satisfies constraint (2.8)3. Due to the singularity of the pressure, we 
cannot use the same argument as in [8]. Nevertheless, using (3.1) we may write:

ερε pε
2

(
ρε

) = −ε
(ρε)γ

(1 − ρε)β−1
+ εpε

2

(
ρε

)
. (3.15)

Letting ε → 0, we see that the l.h.s. converges to ρπ and the second term on the r.h.s. converges to π , on account of (3.14)
and (3.13), respectively, while the middle term vanishes due to the uniform bound on pε

2 . �
4. Multi-dimensional case

Let us now comment what are main differences in the proof for the multi-dimensional case; we refer the reader to [10]
for more details.

• In general, the global-in-time regular solutions are not known to exist, thus one needs to work with the weak solutions.
• The constraint 0 ≤ ρε ≤ 1 can be obtained for sufficiently strong singularity in the pressure (i.e. β > 3), otherwise it 

holds only for the limit.
• The strong convergence of density is not an automatic consequence of the a priori estimates. For this reason, verification 

of (3.14) requires some compactness of the so-called effective pressure.
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