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Let (M, F ) be a compact boundaryless Landsberg manifold. In this work, a necessary and 
sufficient condition for a vector field on (M, F ) to be harmonic is obtained. Next, on a 
compact boundaryless Finsler manifold of zero flag curvature, a necessary and sufficient 
condition for a vector field to be harmonic is found. Furthermore, the nonexistence of 
harmonic vector fields on a compact Landsberg manifold is studied and an upper bound 
for the first de Rham cohomology group is obtained.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Soit (M, F ) une variété landsbergienne compacte sans bord. Dans cet article, il est obtenu 
une condition nécessaire et suffisante pour qu’un champ de vecteurs sur (M, F ) soit 
harmonique. On donne ensuite un énoncé analogue sur une variété finslérienne compacte 
sans bord. En outre, on étudie la non-existence de champs de vecteurs harmoniques sur les 
variétés landsbergiennes compactes et, enfin, une borne supérieure pour le premier groupe 
de cohomologie de de Rham est obtenue.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

On a 2-dimensional Riemannian manifold, a harmonic vector field is a vector field for which divergence and curl operators 
vanish. In a compact Riemannian manifold, the existence of harmonic vector fields is closely related to the sign of the 
Ricci curvature and the topology of the underlying manifold. Bochner in [6] used the Laplace–Beltrami operator to prove 
some theorems on nonexistence of harmonic vector fields on compact Riemannian manifolds with positive or negative 
Ricci curvature. For instance, he proved that on a compact Riemannian manifold without boundary and with positive Ricci 
curvature, there is no vector field for which divergence and differential operators vanish simultaneously. Yano in [8] obtained 
a general formula and proved some of Bochner’s theorems in compact Riemannian manifolds. Next, Wu in [7] proved that in 
Bochner’s theorems, the assumption of positivity or negativity of the Ricci curvature can be replaced by quasi-positivity or 
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quasi-negativity, respectively. Akbar-Zadeh in [1] generalized Bochner and Yano’s techniques in order to study certain vector 
fields on a compact Finsler manifold without boundary. Bao and Lackey in [3] construct a Laplace operator on differential 
forms and study harmonic forms on the underlying Finsler manifold. Next Zhong, C. and Zhong T., in [9] obtained an explicit 
formula for a horizontal Laplace operator.

In the present work we generalize some results of Yano for Landsberg manifolds. More intuitively a necessary and 
sufficient condition for a vector field to be harmonic is obtained, and the nonexistence of harmonic vector fields under 
certain conditions on a Landsberg manifold is proved. Moreover, on an n-dimensional compact Landsberg manifold, the 
dimension of the first de Rham cohomology group is at most 2n − 1 under a certain condition.

2. Preliminaries

Let (M, F ) be a Finsler manifold, π : T M0 → M the bundle of non-zero tangent vectors and π∗T M the pullback bundle. 
We adopt here more often the notations and the terminology of [2] and sometimes those of [4].

Denote the covariant derivatives of Cartan and Berwald connections by ∇ and D respectively. It is well known that the 
Whitney sum T T M0 = H T M ⊕ V T M , where H T M and V T M are horizontal and vertical bundles, respectively, and for any 
X̂ ∈ T T M0 we have X̂ = H X̂ + V X̂ . Let X and Y be two sections on π∗T M . The relations between Cartan and Berwald 
connections are given by

D H X̂ Y = ∇H X̂ Y + yi(∇i T )(X, Y ), (1)

D V X̂ Y = V X̂ .Y , (2)

where T is the Cartan tensor with the components Tki j = 1
2

∂ gij

∂ yk and y = yi ∂

∂xi ∈ TxM . By means of (1) we have Dk gij =
−2∇0Tki j , where index 0 denotes the contracted multiplication by y, hence D0 gij = yk Dk gij = −2yk∇0Tki j = 0. Eq. (2) is 
written locally D ∂̇ j

Y i = ∂Y i

∂ y j . The Ricci identities for Berwald connection are

Dl Dk Xi − Dk Dl Xi = Xr Ri
r lk − ∂ Xi

∂ yr
Rr

0 lk, (3)

Di Dk X j − Dk Di X j = −Xl R
l
j ik − ∂ X j

∂ yr
Rr

0 ik. (4)

The Finsler manifold (M, F ) is called Landsberg manifold if the hv-curvature P vanishes everywhere or equivalently 
∇0T = 0. Let X = Xi(x) ∂

∂xi be a vector field on M . One can associate with X the 1-form X̃ on SM defined by X̃ = Xi(z)dxi +
Ẋidyi , where Ẋi = D0 Xi−yi D0(y j X j)F −2

F . The horizontal part of its associated 1-form on SM is denoted again in this paper by 
X = Xi(z)dxi , where z ∈ SM, cf., [2], p. 231, and the restriction of the first de Rham cohomology group to these 1-forms by 
H1

dR(SM). The differential and co-differential operators of the horizontal 1-form X are given by

dX = 1

2
(Di X j − D j Xi)dxi ∧ dx j − ∂ Xi

∂ y j
dxi ∧ dy j, (5)

δX = −(∇ j X j − X j∇0T j) = −gij Di X j, (6)

where the co-differential operator δ is the formal adjoint of d, in the global scalar product over SM, cf., [2] pp. 223 and 239. 
Let (M, F ) be a compact Finsler manifold without boundary, the divergence formula for a horizontal 1-form X = Xi(z)dxi is 
given by∫

SM

(δX)η = −
∫

SM

(
gij Di X j

)
η = 0, (7)

where η is a volume form on SM defined by

η(g) = (−1)
n(n−1)

2

(n − 1)! ω ∧
(n−1)-time︷ ︸︸ ︷

dω ∧ ... ∧ dω,

ω = uidxi is the 1-form corresponding to a unitary vector field u : M → SM.

3. Harmonic vector fields

Let (M, F ) be a Finsler manifold, the vector field X on M is said to be harmonic if its corresponding horizontal 1-form 
on SM satisfies �X = dδ(X) + δd(X) = 0 or dX = 0 and δX = 0, equivalently:

Di X j = D j Xi, gij Di X j = 0,
∂ Xi

∂ y j
= 0. (8)
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Theorem 3.1. If the vector field X on a compact Landsberg manifold without boundary satisfies g jk Dk D j Xi = (Ri
k + T it

r Rr
0 kt)Xk and 

∂ Xi
∂ y j = 0, then X is harmonic. The converse is true if T it

r Rr
0 kt Xk = 0.

Proof. Let g jk Dk D j Xi = (Ri
k + T it

r Rr
0 kt)Xk and ∂ Xh

∂ y j = 0. By covariant derivative, we have:

D j
(

Xk Dk X j) = Xk D j Dk X j + Dk X j D j Xk. (9)

Note that

∂ Xi

∂ yr
= D ∂̇r

X i = D ∂̇r

(
Xh gih)

= Xh D ∂̇r
gih + gih D ∂̇r

Xh = Xh T ih
r + gih ∂ Xh

∂ yr
. (10)

By means of the torsion freeness of the Berwald connection, the assumption ∂ Xh
∂ y j = 0, (3) and (10) we obtain:

Dl Dk Xi − Dk Dl Xi = Ri
j lk X j − Xh T ih

r Rr
0 lk.

By contraction of the above equation with respect to i and l, we obtain:

D j Dk X j − Dk D j X j = R jk X j + X j T t
r j Rr

0 kt,

or equivalently

D j Dk X j = Dk D j X j + (
R jk + T t

r j Rr
0 kt

)
X j . (11)

Replacing (11) in (9), we find:

D j
(

Xk Dk X j) = Xk Dk D j X j + (
R jk + T t

r j Rr
0 kt

)
X j Xk + Dk X j D j Xk. (12)

The covariant derivative of Xk D j X j yields:

Dk
(

Xk D j X j) = Xk Dk D j X j + Dk Xk D j X j. (13)

Using (12) and (13) we have:

D j
(

Xk Dk X j) − Dk
(

Xk D j X j) = (
R jk + T t

r j Rr
0 kt

)
X j Xk + Dk X j D j Xk − Dk Xk D j X j . (14)

Since M is compact and the two terms in the left-hand side of (14) are divergence, by integration of (14) over SM and using 
divergence formula (7), we obtain:∫

SM

[(
R jk + T t

r j Rr
0 kt

)
X j Xk + Dk X j D j Xk − Dk Xk D j X j]η = 0. (15)

Let us consider the function φ = Xi Xi on SM, we have:

g jk Dk D jφ = g jk[Dk Xi D j Xi + Xi Dk D j Xi + Dk Xi D j Xi + Xi Dk D j Xi
]
. (16)

For a Landsberg manifold Dk gij = 0, hence Xi Dk D j Xi = Xi Dk D j Xi , therefore (16) reduces to

g jk Dk D jφ = 2Xi g jk Dk D j Xi + 2D j Xi D j Xi . (17)

The left-hand side in (17) is divergence, hence by integration over SM and using divergence formula (7), we obtain:∫
SM

[
Xi g jk Dk D j Xi + D j Xk D j Xk

]
η = 0. (18)

By subtracting (15) and (18) we get:∫
SM

[(
Xi g jk Dk D j Xi − (

R jk + T t
r j Rr

0 kt

)
X j Xk) + (

D j Xk D j Xk − Dk X j D j Xk) + Dk Xk D j X j]η = 0. (19)

Note that (R jk + T t Rr )X j Xk = (Ri + T it
r Rr )Xi Xk , hence relation (19) is equivalent to
r j 0 kt k 0 kt
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∫
SM

[
Xi

(
g jk Dk D j Xi − (

Ri
k + T it

r Rr
0 kt

)
Xk) + 1

2

(
D j Xk − Dk X j)(D j Xk − Dk X j) + Dk Xk D j X j

]
η = 0. (20)

By assumption, the first term in (20) is zero. The next two terms 1
2 ‖(D j Xk − Dk X j)‖2 and (D j X j)2 are positive or zero, 

hence by (20) are zero. Therefore we obtain D j Xk − Dk X j = 0 and D j X j = 0, thus by definition X is a harmonic vector field 
on M . Conversely, let X be a harmonic vector field on a Landsberg manifold and T it

r Rr
0 kt Xk = 0. Replacing Di X j = D j Xi and 

∂ Xi
∂ y j = 0 in (4) yields

Di Dk X j − Dk D j Xi = −Rl
j ik Xl. (21)

Multiplying (21) by g jk on Landsberg manifold, we have:

Di D j X j − g jk Dk D j Xi = −Rl
i Xl, or g jk Dk D j Xi = Ri

l Xl.

Hence proof is complete. �
Example 1. Let (M, F ) be a simply connected, compact Landsberg Manifold with positive constant flag curvature. It is well known that 
(M, F ) reduces to a Riemannian manifold and T it

r = 0, cf., [5] or [2] p. 129. Therefore a vector field X on M is harmonic if and only if 
g jk Dk D j Xi = Ri

l Xl and ∂ Xi
∂ y j = 0.

Corollary 3.2. Let (M, F ) be a compact Finsler manifold without boundary and with zero flag curvature. A necessary and sufficient 
condition for a vector field X on M to be harmonic is g jk Dk D j Xi = 0 and ∂ Xi

∂ y j = 0.

Proof. It is well known that any compact Finsler manifold without boundary of zero flag curvature is a Landsberg manifold 
and hh-curvature of Berwald connection vanishes, cf. [2], p. 164 and [4], p. 328. Hence the proof is a direct conclusion of 
the above theorem. �
Theorem 3.3. Let (M, F ) be a compact Landsberg manifold without boundary and X a harmonic vector field on M. If (R jk +
T t

r j Rr
0 kt)X j Xk ≥ 0, then the covariant derivatives of X with respect to the Cartan and Berwald connections vanish. Moreover, there 

exists no non-zero harmonic vector field on (M, F ) which satisfies the relation (R jk + T t
r j Rr

0 kt)X j Xk > 0.

Proof. Let X be a harmonic vector field on M . By definition,

gij Di X j = 0, Di X j = D j Xi,
∂ Xi

∂ y j
= 0. (22)

Therefore on a Landsberg manifold:

Dk Xk = gkj Dk X j = 0. (23)

On the other hand by means of (22) we have:

Dk X j D j Xk = g jl Dk Xl D j Xk = g jl Dl Xk D j Xk = ‖Dl Xk‖2 ≥ 0. (24)

Substituting (23) and (24) in (15) we obtain:∫
SM

((
R jk + T t

r j Rr
0 kt

)
X j Xk + ‖Dl Xk‖2)η = 0. (25)

If the vector field X satisfies in (R jk + T t
r j Rr

0 kt)X j Xk ≥ 0, then by (25) we find ‖Dl Xk‖ = 0 and hence ∇l Xk = Dl Xk = 0. 
Moreover, by (25) there exist no non-zero harmonic vector field on M which satisfies (R jk + T t

r j Rr
0 kt)X j Xk > 0. This com-

pletes the proof. �
Theorem 3.4. Let (M, F ) be an n-dimensional compact Landsberg manifold without boundary and X a harmonic vector field on M. 
If (R jk + T t

r j Rr
0 kt)X j Xk ≥ 0, then the first de Rham cohomology group of SM satisfies dim H1

dR(SM) ≤ 2n − 1. Moreover, if (R jk +
T t

r j Rr
0 kt)X j Xk > 0, then H1

dR(SM) = 0.

Proof. Let X be a harmonic vector field on (M, F ) endowed with a Berwald connection which satisfies (R jk +
T t Rr )X j Xk ≥ 0. By definition of harmonic vector fields and Theorem 3.3, we have Di X j = D ˙ X j = 0. Therefore the 
r j 0 kt ∂ i
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1-form X = Xi(z)dxi is parallel with respect to the Berwald connection on SM. It is well known that a parallel 1-form on a 
manifold is determined by its value at a point on the underlying manifold. Hence the dimension of the vector space of paral-
lel 1-forms is at most equal to the dimension of the cotangent space T ∗

x (SM), that is 2n −1. Therefore dim H1
dR(SM) ≤ 2n −1. 

Next, if (R jk +T t
r j Rr

0 kt)X j Xk > 0, then by means of Theorem 3.3 there is no non-zero harmonic vector field X which satisfies 
the above strict inequality. Hence SM has no nontrivial harmonic 1-form. Thus H1

dR (SM) = 0 and the proof is complete. �
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