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In this Note, we present a general and fairly simple method to design families of 
contractions for nonlinear partial differential equations, either of evolution type, or of 
stationary type. As a particular example, we apply this method to the porous medium 
equation, for which we get new contractions. This method opens new directions to explore.
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r é s u m é

Dans cette Note, nous présentons une méthode simple et générale pour fabriquer 
des familles de contractions pour des équations aux dérivées partielles non linéaires, 
d’évolution, ou bien stationnaires. À titre d’exemple, cette méthode est appliquée à 
l’équation des milieux poreux, pour laquelle nous obtenons de nouvelles contractions. Cette 
méthode ouvre de nouvelles voies de recherche à explorer.

© 2014 Published by Elsevier Masson SAS on behalf of Académie des sciences.

1. Introduction

In this Note, we introduce a new tool that we call the method of differential contractions. This method allows us to design 
families of contractions for general PDEs of evolution type or of stationary type. To explain clearly the method, we will focus 
on a very well-studied case: the porous medium-type equation for m > 0, that we normalize (for convenience) as follows:

∂th = �

(
hm

m

)
on Q = (0,+∞) × Ω (1)

where Ω is an open set in dimension d ≥ 1. We will also consider the stationary analogue:

h − �

(
hm

m

)
= f on Ω. (2)

The reader will understand the generality of the method that can be applied to a large variety of equations (with possi-
ble coefficients depending on space or time coordinates). These equations include the p-Laplacian, the doubly nonlinear 
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equation, quasilinear equations like for instance the minimal surface equation, some parabolic systems, and even certain 
particular hyperbolic systems. The application to some of these equations is contained in [3] and will be presented in a 
subsequent work [5].

We give the typical contraction results that we can get, but the most interesting is the method itself which is presented 
in Section 2, and naturally provides new directions to explore. Given two functions gi(x) for i = 0, 1, we define the distance

dα,p(g1, g0) =
(∫

Ω

∣∣gα
1 − gα

0

∣∣p
dx

)1/p

for (α, p) ∈ K |n| and n = m − 1 ∈ (−1, 1), with the following definition of the set for n �= 0:

K |n| =
{
(α, p) ∈ (0,+∞) × [

1,1/n2], α ∈ [
α−(p),α+(p)

]
, with α±(p) = 1 + (p − 1)

2p

(−1 ±
√

1 − n2 p
)}

.

It is possible to see that this set is convex and that the minimal value of α corresponds to the point (α, p) = (|n|, 2−|n|
|n| ), 

which is related to the classical pressure term hm−1 when m > 1. The maximal value of α corresponds to the point (α, p) =
(1, 1). For n = 0, we set K0 = {(α, p) ∈ (0, 1] × [1, +∞), α ≥ 1/p}. For convenience, we present our rigorous results when 
the open set Ω is a torus, but this particular choice of Ω is absolutely not fundamental.

Theorem 1.1 (Contraction family for porous medium type equations). Assume that we work on the torus Ω = T
d with d ≥ 1 and that 

m − 1 = n ∈ (−1, 1). Let 0 ≤ h0
i ∈ L∞(Ω) be two initial data for i = 0, 1. Let us call hi ∈ C([0, +∞); L1(Ω)) ∩ L∞(Q ) the unique 

solutions to (3) with initial data h0
i for i = 0, 1. Then we have the following contraction in time with hi(t) = hi(t, ·)

the map t �→ dα,p
(
h1(t),h0(t)

)
is nonincreasing

if (α, p) ∈ K |n| .

Up to our knowledge, in any dimensions, only contractions in L1, H−1 and the 2-Wasserstein distance are known for 
solutions to (1) (see [10,8]). Our result provides a new contraction family that can be seen as a generalization of the L1

contraction. A direct approach to this result will be presented in [4] in the case Ω = R
d . Note that even for the standard 

heat equation, our result seems new.

Theorem 1.2 (Contraction family for the stationary equation). Assume that we work on the torus Ω = T
d with d ≥ 1 and that m −1 =

n ∈ (−1, 1). Let 0 ≤ f i ∈ L∞(Ω) be two data for i = 0, 1. Let 0 ≤ hi ∈ L∞(Ω) be the unique solutions to (2) with right-hand side 
f = f i for i = 0, 1. Then we have

dα,p(h1,h0) ≤ dα,p( f1, f0)

if (α, p) ∈ K |n| .

The proofs of Theorems 1.1 and 1.2 are given in Section 3.

2. The method

Here we present heuristically the method, which is quite elementary.

2.1. The evolution case

At least for smooth positive solutions, we prefer to write Eq. (1) as follows with n = m − 1:

∂th = div
(
hn∇h

)
. (3)

2.1.1. Motivation
For two positive functions hε and h0 with the same mass 

∫
Ω

hε dx = ∫
Ω

h0 dx, it is well known (see for instance [2,6,7]

and the references therein) that the relative entropy S(hε |h0) =
∫
Ω

ψ( hε
h0

)h0 dx with ψ(g) = g ln g plays a key role in the 
study of the long-time behavior of diffusion equations. Indeed, for hε = h0 + εh′

0 + o(ε), where h′
0 is a function, we have:

S(hε|h0) ∼ ε2
∫
Ω

|h′
0|2

h0
dx. (4)

Remark 1 (Relation with the 2-Wasserstein distance). Note that a simple computation allows us to see that the 2-Wasserstein 
distance W2 satisfies in dimension d = 1: W 2

2 (hε, h0) ∼ ε2
∫
R

|H ′
0|2

h0
dx, with H ′

0(x) = ∫ x
−∞ h′

0(y) dy, which shares some sim-
ilarities with (4).
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2.1.2. Checking the differential contraction
Given now two positive smooth solutions hi = hi(t) = hi(t, ·) for i = 0, 1, it is interesting to consider a smooth curve hs

of positive smooth solutions to (3) connecting h0 with h1 that we parameterize by s ∈ [0, 1]. We write for short:

h = hs and h′ = d

ds
hs

where h′ solves the linearized equation:

∂th
′ = div

(
nhn−1h′∇h + hn∇h′). (5)

We then consider the general differential action

S
(
h,h′) =

∫
Ω

L
(
h,h′) dx

that generalizes (4) and is devoted to be non-increasing in time, for a certain Lagrangian L to determine. To check the 
differential contraction, we simply compute (dropping the dx in the integral):

d

dt
S
(
h,h′) =

∫
Ω

L′
h∂th +L′

h′∂th
′

= −
∫
Ω

hn
( ∇ ln h

∇ ln |h′|
)T

Q

( ∇ ln h

∇ ln |h′|
)

(6)

where we have used (3), (5) and integration by parts to get the matrix:

Q =
(

A C
C B

)
with

⎧⎪⎨
⎪⎩

A = h2L′′
hh + nhh′L′′

hh′

B = h′2L′′
h′h′

C = hh′L′′
hh′ + n

2 h′2L′′
h′h′ .

The goal is then to choose carefully the function L such that the symmetric matrix Q is nonnegative. Several choices are 
possible, which lead to more or less exotic contractions. At least, if we think to the homogeneity of our equation, it seems 
reasonable to try a homogeneous Lagrangian L as follows (which again generalizes (4)):

L
(
h,h′) = hβ |h′|p

p
.

This gives

Q = hβ
∣∣h′∣∣p

Q̄ with Q̄ =
( β(β−1)

p + nβ β + n
2 (p − 1)

β + n
2 (p − 1) p − 1

)

and − det Q̄ = p−1{β2 + (p − 1)β + n2 p(p−1)2

4 }. For |n| ≤ 1, we deduce that this matrix is nonnegative if

p ∈ [
1,1/n2] and β ∈ [β−, β+] with β± = (p − 1)

2

(−1 ±
√

1 − n2 p
)
. (7)

This shows the fundamental differential contraction

d

dt
S ≤ 0. (8)

2.1.3. Definition of a pseudo-distance
Now, given two positive smooth functions gi(x) for i = 0, 1, we define the set Γ g1

g0 of smooth curves γ = (γs)s∈[0,1] such 
that γ0 = g0, γ1 = g1. We define the pseudo-distance

d(g1, g0) = inf
γ ∈Γ

g1
g0

A(γ ) with A(γ ) = c

1∫
0

S
(
γs, γ

′
s

)
ds (9)

where c > 0 is a normalization constant. We recall that ()′ = d
ds (), and set α = 1 + β

p . Therefore, using the fact that (γ α
s )′ =

αγ α−1
s γ ′

s , we get:

A(γ ) =
∫

dx

( 1∫ ∣∣(γ α
s

)′∣∣p
ds

)
if c = pαp
Ω 0
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with α > 0 with our choices of β . We recall that γ α
s = gα

s for s = 0, 1. Then a classical optimization of the convex functional 
s �→ ∫ 1

0 ds|(γ α
s )′|p shows that the infimum in (9) is reached for the straight line γ α

s = gα
0 + s(gα

1 − gα
0 ) and then

d(g1, g0) =
∫
Ω

∣∣gα
1 − gα

0

∣∣p
dx = (

dα,p(g1, g0)
)p

.

2.1.4. Conclusion
From (8), we deduce with h(t) = (hs(t, ·))s∈[0,1]

d

dt
A

(
h(t)

) = c

1∫
0

d

dt

(
S
(
hs(t),h′

s(t)
))

ds ≤ 0.

Therefore, for any 0 ≤ t1 < t2, we have:

d
(
h1(t2),h0(t2)

) ≤ A
(
h(t2)

) ≤ A
(
h(t1)

)
.

If, finally, we choose at time t = t1 the data h(t1) such that A(h(t1)) = d(h1(t1), h0(t0)), we deduce that

the map t �→ d
(
h1(t),h0(t)

)
is non-increasing,

which establishes the expected contraction.

Remark 2 (Evaluation/optimization of the dissipation term). The dissipation term d
dt (d(h1, h0)) can be either computed directly 

as in [4,3], or estimated using an integration 
∫ 1

0 ds of the right-hand side of (6) and doing some (at least partial) opti-
mization. It would be also interesting to find new associated functional inequalities as in the entropy–entropy dissipation 
method (see [2,6,7]).

2.2. Adaptation to the stationary case

Similarly to the evolution case, at least for smooth positive solutions, we prefer to write Eq. (2) as follows:

h − div
(
hn∇h

) = f on Ω. (10)

We consider two solutions hi(x) of (10) associated with data f i for i = 0, 1. Then we introduce a curve of functions f s

that coincides with the data f i for s = i = 0, 1, and call hs the corresponding solutions to (10) with data f s . We compute:

S
(
h,h′) − S

(
f , f ′) =

∫
Ω

L
(
h,h′) −L

(
f , f ′) ≤

∫
Ω

(h − f )L′
h

(
h,h′) + (

h′ − f ′)L′
h′

(
h,h′)

where we have used the convexity of L in (h, h′) to get the inequality. Indeed, computing the Hessian of L, it is easy to 
check that the convexity of L holds for our choices of β in (7). We then conclude using the equations satisfied by h and h′
and by integration by parts, as in the method in the evolution case. This shows that S(h, h′) − S( f , f ′) ≤ 0, which implies 
d(h1, h0) ≤ d( f1, f0).

3. Proof of the results

Proof of Theorem 1.1. We first apply the method to smooth positive solutions. In this case, the heuristic reasoning is 
rigorous. Then we deduce the result for general initial data, by approximation (see the classical results in [11,12,9]). �
Proof of Theorem 1.2. Given a smooth positive function f , and using standard elliptic theory, it is easy to construct a 
smooth solution h that satisfies (from the maximum principle): minΩ f ≤ h ≤ maxΩ f . In this framework, the heuristic 
method is rigorous and gives the result. We then recover the result for general data, by a standard approximation argument 
(see classical results, for instance, in [1]). �
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