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We prove that the Nazarov–Sodin constant, which up to a natural scaling gives the leading 
order growth for the expected number of nodal components of a random Gaussian field, 
genuinely depends on the field. We then infer the same for “arithmetic random waves”, i.e. 
random toral Laplace eigenfunctions.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

On démontre que la constante de Nazarov–Sodin, qui, à un changement d’échelle près, 
donne le terme principal de l’ordre de croissance du nombre de composantes nodales d’un 
champ aléatoire gaussien, dépend effectivement du champ. On en déduit que le résultat 
reste vrai pour les « ondes aléatoires arithmétiques », c’est-à-dire pour les fonctions propres 
du laplacien aléatoire sur un tore.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. The Nazarov–Sodin constant

Let m ≥ 2, and

f : Rm →R

be a stationary centred Gaussian random field, and r f :Rm →R its covariance function defined as

r f (x) = E
[

f (y) f (y + x)
]
.

Given such an f , let ρ = ρ f denote its spectral measure, i.e. the Fourier transform of r f (assumed to be a probability 
measure); note that prescribing ρ defines f uniquely. We further assume that a.s. f is sufficiently smooth, and that the 
distribution of ∇ f (x) is non-degenerate.

Let N( f ; R) be the number of connected components of f −1(0) in B0(R) (the radius-R ball centred at 0), usually referred 
to as the nodal components of f ; N( f ; R) is a random variable. Nazarov and Sodin [9, Theorem 1] proved that under the 
above conditions the expected number of nodal components of f is

E
[
N( f ; R)

] = cNS(ρ f )Rm + o
(

Rm)
, (1)
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where cNS(ρ f ) ≥ 0 is referred to as the Nazarov–Sodin constant of f (we will consider cNS as a function of the spectral 
density of ρ f rather than of f ).

For m = 2, ρ = ρS1 the uniform measure on the unit circle S1 ⊆ R
2 (i.e. dρ = dθ

2π on S1 vanishing outside the circle), 
the corresponding random field fRWM is known as random monochromatic waves; Berry [2] suggested that fRWM may serve 
as a universal model to Laplace eigenfunctions on generic surfaces in the high-energy limit—the Random Wave Model. The 
corresponding universal Nazarov–Sodin constant cRWM is known to be strictly positive [7], and in [3] its value was predicted 
using a certain percolation model. However, recent numerics by Nastacescu, as well as by Konrad, show a small deviation 
from these predictions.

Let (Mm, g) be a smooth manifold. Here the restriction of a fixed random field f : M → R to growing domains, as 
was considered on the Euclidean space, makes no sense. Instead we consider a sequence of random fields { f L}L∈L (for L
lying in some discrete subset L ⊆ R), and the total number N( f L) of nodal components of f L on M . Here we may define a 
scaled covariance function of f L around a fixed point x ∈ M on its tangent space Tx(M) ∼= R

m via the exponential map at 
x, and assume that for a.e. x ∈ M the scaled covariance converges, locally uniformly, to a covariance function of a limiting 
stationary Gaussian field around x.

For the setup as above Nazarov–Sodin proved ([9], Theorem 4) that

N( f L) = cNS · Lm + o
(
Lm)

,

for some cNS ≥ 0 depending on the limiting fields only, namely their Nazarov–Sodin constants. This result applies in par-
ticular to random band-limited functions on a generic Riemannian manifold, considered in [8], with the constant cNS > 0
strictly positive.

2. Statement of results for arithmetic random waves

Let S be the set of all integers that admit a representation as a sum of two integer squares and n ∈ S . The toral Laplace 
eigenfunctions fn :R2/Z2 → R of eigenvalue −4π2n may be expressed as

fn(x) =
∑

‖λ‖2=n
λ∈Z2

aλe2π i〈x,λ〉 (2)

with some coefficients aλ satisfying a−λ = aλ . We endow the space of eigenfunctions with a Gaussian probability measure 
by making the coefficient aλ i.i.d. standard Gaussian (save for the relation a−λ = aλ).

For this model, it is known [5] that various local properties of fn , e.g., the total length of the nodal line f −1
n (0), depend 

on the limiting angular distribution of {λ ∈ Z
2 : ‖λ‖2 = n}. More precisely, for n ∈ S let

μn = 1

r2(n)

∑
‖λ‖2=n

δλ/
√

n,

where δx is the Dirac delta at x, be a probability measure on the unit circle S1 ⊆ R
2. Then in order to exhibit an asymptotic 

law for the total length of f −1
n (0) such as its variance, or some other local properties of fn , it is natural to pass to subse-

quences {n j} ⊆ S such that μn j weakly converges to μ, a probability measure on S1. In this situation, we may identify μ
as the spectral density of the limiting field around each point of the torus (when the unit circle is considered embedded, 
S1 ⊆ R

2); such a limiting probability measure μ necessarily lies in the set PSymm of probability measures on S1, invariant 
w.r.t. π/2-rotation and complex conjugation (i.e. (x1, x2) �→ (x1, −x2)). In fact, the family of weak-* partial limits of {μn}
(“attainable” measures) is known [6] to be a proper subset of PSymm.

Let N( fn) as usual denote the total number of nodal components of fn . An application of [9], Theorem 4 mentioned 
above implies that if, as above, μn j ⇒ μ with μ some probability measure on S1, we have

E
[
N( fn)

] = cNS(μ)n + o(n), (3)

with the same leading constant cNS(μ) as for the scale-invariant model (1).
In order to state our results, first we will need the following notation: let

ν0 = 1

4

3∑
k=0

δk·π/2

be the Cilleruelo measure [4], and

νπ/4 = 1

4

3∑
k=0

δπ/4+k·π/2

be the tilted Cilleruelo measure; these are the only measures in PSymm supported on precisely four points. We prove the 
following concerning the range of possible constants cNS(μ) appearing in (3).
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Theorem 2.1. For μ in the family of weak-* partial limits of {μn} the functional cNS(μ) attains an interval of the form INS = [0, dmax]
with some dmax > 0. Equivalently,

N( fn j ) = c · n j + o(n j)

for some {n j} ⊆ S, if and only if c ∈ INS . Moreover, for μ ∈ PSymm , cNS(μ) = 0 if and only if μ = ν0 or μ = νπ/4 (i.e., either the 
Cilleruelo or tilted Cilleruelo measures.)

Theorem 2.1 is a particular case of a more general result concerning arbitrary random fields on R2, presented in Sec-
tion 3. Concerning the maximal Nazarov–Sodin constant dmax > 0, we believe that the following is true.

Conjecture 2.2. For μ ∈ PSymm , the maximal value dmax is uniquely attained by cNS(μS1 ), where μS1 is the uniform measure on 
S1 ⊆R

2 . In particular,

dmax = cRWM.

Question 2.3. What is the true asymptotic behaviour of E[ fn j ] for {n j} a Cilleruelo sequence, i.e. μn j ⇒ ν0? The latter 
might not admit an asymptotic law; in this case it would still be very interesting to know if the expected number of nodal 
components grows, in the sense that

lim inf
j→∞

N( fn j ) → ∞.

In fact, we have reasons to believe that the stronger bound

N( fn j ) � √
n j

holds.

Motivated by the fact that the nodal length variance only depends on the first non-trivial Fourier coefficient of the 
measure [5], and some other local computations, we raise the following question.

Question 2.4. Is it true that cNS(μ) with μ ∈ PSymm supported on S1 only depends on finitely many Fourier coefficients, 
e.g. μ̂(4) or (μ̂(4), ̂μ(8))?

3. Statement of results for random waves on R2

Let PR be the collection of probability measures on R2 supported on the radius-R standard ball B(R) ⊆ R
2; by the scale 

invariance we may assume that R = 1, and denote P :=P1.

Theorem 3.1. The functional

cNS : P →R≥0

is continuous w.r.t. the weak-* topology on P .

Some aspects of the proof of Theorem 3.1 can be found in Section 3.1.

Proposition 3.2. Let ν0 be the Cilleruelo measure on R2 as above. Then its Nazarov–Sodin constant vanishes, i.e.,

cNS(ν0) = 0.

Note that the result of Proposition 3.2 is in the same spirit as known constructions of (deterministic) eigenfunctions of 
arbitrarily high energy with few or bounded number of nodal components that arise in eigenspaces with a spectral measure 
given by the Cilleruelo measure (see the recent manuscript [1]). Proposition 3.2 can be proved by either considering an 
explicit construction of a random field f with the given spectral measure ν0 and noting that for this model there are a.s. 
no compact nodal components, or, alternatively, by a local computation, e.g. of the number of “flips”, i.e. points x with 
f (x) = ∂

∂x1
f (x) = 0.

Combining Theorem 3.1, Proposition 3.2, and using the convexity of P , we obtain the following corollary.

Corollary 3.3. The Nazarov–Sodin constant cNS(ρ) for ρ ∈P attains an interval of the form [0, cmax] for some 0 < cmax < ∞.

As for the maximal value of the Nazarov–Sodin constant, we make the following conjecture.
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Conjecture 3.4. For ρ ∈ P , the maximal value cmax is uniquely attained by cNS(ρ) for ρ the uniform measure on S1 ⊆ R
2 . In 

particular (cf. Conjecture 2.2),

cmax = dmax = cRWM.

3.1. On the proof of continuity

To prove Theorem 3.1, we follow the steps of Nazarov–Sodin [9] closely, controlling the various error terms encountered. 
One of the key aspects of our proof, different from Nazarov–Sodin’s one, is proving a uniform version of (1) as below, 
perhaps of independent interest.

Proposition 3.5. Let fρ be a random field with spectral density ρ ∈P . The limit

cNS(ρ) = lim
R→∞

E[N( fρ; R)]
R2

is uniform w.r.t. ρ ∈P . More precisely,

E
[
N( fρ; R)

] = cNS(ρ)R2 + O (R)

with constant involved in the “O”-notation universal.
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