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Let {αn}n≥0 be a sequence of scalars in the open unit disc of C, and let {ln}n≥0 be a 
sequence of natural numbers satisfying 

∑∞
n=0(1 − ln|αn|) < ∞. Then the joint (Mz1 , Mz2 )

invariant subspace

SΦ =
∞∨

n=0

(
zn

1

∞∏
k=n

(−ᾱk

|αk|
z2 − αk

1 − ᾱk z2

)lk

H2(
D

2)),

is called a Rudin submodule. In this paper, we analyze the class of Rudin submodules and 
prove that

dim
(
SΦ � (z1SΦ + z2SΦ)

) = 1 + #{n ≥ 0 : αn = 0} < ∞.

In particular, this answers a question earlier raised by Douglas and Yang (2000) [4].
© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Soit {αn}n≥0 une suite de scalaires du disque unité ouvert de C, et soit {ln}n≥0 une suite de 
nombres naturels vérifiant 

∑∞
n=0(1 − ln|αn|) < ∞. Alors le sous-espace invariant (Mz1 , Mz2 )

SΦ =
∞∨

n=0

(
zn

1

∞∏
k=n

(−ᾱk

|αk|
z2 − αk

1 − ᾱk z2

)lk

H2(
D

2)),

est appelé sous-module de Rudin. Dans cette Note, on analyse la classe des sous-modules 
de Rudin et on démontre que

dim
(

SΦ � (z1 SΦ + z2 SΦ)
) = 1 + #{n ≥ 0 : αn = 0} < ∞.

En particulier, ce résultat répond à une question posée précédemment par Douglas et Yang 
(2000) [4].
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1. Introduction

Let H2(D) denote the Hardy space over the unit disc D = {z ∈ C : |z| < 1}. We also say that H2(D) is the Hardy module
over D. The Hilbert space tensor product H2(D) ⊗ H2(D) is called the Hardy module over D2 and is denoted by H2(D2). As 
is well known, every vector in H2(D2) can be represented as square summable power series over D2 and the multiplication 
operators by the coordinate functions (Mz1 , Mz2) are commuting and doubly commuting isometries (see [7]). We will often 
identify (Mz1 , Mz2) with (Mz ⊗ I H2(D), I H2(D) ⊗ Mz).

A closed subspace S of H2(D2) (or H2(D)) is said to be a submodule if S is invariant under Mz1 and Mz2 (or Mz). 
Beurling’s (cf. [3]) celebrated result states that a closed subspace S ⊆ H2(D) is a submodule of H2(D) if and only if 
S = θ H2(D) for some bounded inner function θ ∈ H∞(D). This is a fundamental result that has far-reaching consequences. 
For instance, it readily follows that S = θ H2(D) admits the wandering subspace S � zS = Cθ . In particular, S � zS is 
a generating set of S . The same conclusion also holds when S is one of the following: a submodule of the Bergman 
module [1], a doubly commuting submodule of H2(Dn) [8] and a doubly commuting submodule of the Bergman space or 
the Dirichlet space over polydisc [2]. This motivates us to look into the “wandering subspace” WS := S � (z1S + z2S) =
(S � z1S) ∩ (S � z2S), and leads us to ask whether WS is a generating set of S or not, where S is a submodule of H2(D2). 
In general, however, this question has a negative answer. Rudin [7] demonstrated a negative answer to this question by 
constructing a submodule S of H2(D2) for which S � (z1S + z2S) is a finite-dimensional subspace, but not a generating 
set of S .

Our motivation in this paper is the following: (1) to study a natural class of submodules, namely “generalized Rudin sub-
modules”, and (2) to compute the wandering dimensions of generalized Rudin submodules. In particular, we are interested 
in understanding the wandering subspace of Rudin submodules of H2(D2). Our results, restricted to the case of Rudin’s 
submodule, answers a question raised by Douglas and Yang (see Corollary 3.2). Also these results are one important step in 
our program to understand the idea of constructing new submodules and quotient modules out of old ones.

Given an inner function ϕ ∈ H∞(D), for notational simplicity, we set

Sϕ := ϕH2(D), and Qϕ := H2(D) � Sϕ.

We now turn to formulate our definition of generalized Rudin submodules. Let Ψ = {ψn}∞n=0 ⊆ H∞(D) be a sequence 
of increasing inner functions and Φ = {ϕn}∞n=0 ⊆ H∞(D) be a sequence of decreasing inner functions. Then the generalized 
Rudin submodule corresponding to the inner sequence Ψ and Φ is denoted by SΨ,Φ , and defined by

SΨ,Φ =
∞∨

n=0

(Sψn ⊗ Sϕn ).

Now let {αn}n≥0 be a sequence of points in D and {li}∞n=0 ⊆ N such that 
∑

(1 − li |αi |) < ∞, and ψn = zn , and ϕn := ∏∞
i=n bli

αi , 
n ≥ 0. Then SΨ,Φ will be denoted by SΦ :

SΦ =
∞∨

n=0

(Szn ⊗ Sϕn).

Here for each non-zero α ∈ D, we denote by bα the Blaschke factor bα(z) := −ᾱ
|α|

z−α
1−ᾱz and for α = 0 we set b0(z) := z.

The sequence of Blaschke products as defined above is called the Rudin sequence, and the submodule SΦ as defined above 
is called the Rudin submodule corresponding to the Rudin sequence Φ . These submodules are also called inner-sequence-
based invariant subspaces of H2(D2), and were studied by M. Seto and R. Yang [12], Seto [9–11], and Izuchi et al. [5].

The main result of this paper states that

dim
(
SΦ � (z1SΦ + z2SΦ)

) = 1 + #{n ≥ 0 : αn = 0} < ∞.

The remainder of the paper is organized as follows. Section 2 collects necessary notations and contains preparatory 
materials, which are an essential tool in what follows. After this preparatory section, which contains also new results, the 
main theorems are proved in Section 3.

2. Preparatory results

We begin with the following representations of SΨ,Φ (cf. [5]).

Lemma 2.1. Let SΨ,Φ be a generalized Rudin submodule and ϕ−1 := 0. Then

SΨ,Φ =
∞∨

n=0

Sψn ⊗ Sϕn =
∞⊕

n=0

Sψn ⊗ (Sϕn � Sϕn−1). (1)
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Proof. First note that for all n ≥ 1,

n⊕
j=0

(Sϕ j � Sϕ j−1) = Sϕn .

Then the required representation of SΨ,Φ can be obtained from the above identity and the fact that Sψn ⊆ Sψn−1 (n ≥ 1).

Keeping the equality SΨ,Φ � (z1SΨ,Φ + z2SΨ,Φ) = (SΨ,Φ � z1SΨ,Φ) ∩ (SΨ,Φ � z2SΨ,Φ) in mind, we pass to describe the 
closed subspace (SΨ,Φ � z1SΨ,Φ).

Lemma 2.2. Let SΨ,Φ be a generalized Rudin’s submodule and ϕ−1 := 0. Then

(SΨ,Φ � z1SΨ,Φ) =
∞⊕

n=0

Cψn ⊗ (Sϕn � Sϕn−1).

Proof. By Lemma 2.1 it follows that

SΨ,Φ � z1SΨ,Φ =
( ∞⊕

n=0

Sψn ⊗ (Sϕn � Sϕn−1)

)
� z1

( ∞⊕
n=0

Sψn ⊗ (Sϕn � Sϕn−1)

)

=
∞⊕

n=0

(Sψn � z1Sψn ) ⊗ (Sϕn � Sϕn−1).

Thus the result follows from the fact that Sθ � zSθ = Cθ , for any inner θ ∈ H∞(D).

Before proceeding further, we first observe that for α ∈ D and m ≥ 1, {b j
α M∗

z bα}m−1
j=0 is an orthogonal basis of the quotient 

module Qbm
α

.

Lemma 2.3. Let θ1, θ2 be a pair of inner functions such that θ1 = bm
α θ2 for some α ∈D and m ≥ 1. Then

Sθ2 � Sθ1 = θ2Qbm
α

= θ2
(

H2(D) � bm
α H2(D)

) =
m−1⊕
k=0

Cθ2
(
bk
α M∗

z bα

)
.

In particular, Sθ2 � Sθ1 is an m-dimensional subspace of H2(D).

Proof. The proof follows from the fact that Mθ2 is an isometry and {b j
α M∗

z bα}m−1
j=0 is an orthogonal basis of Qbm

α
.

To proceed with our discussion, it is useful to compute the matrix representation of the operator PSθ2 �Sθ1
M∗

z |Sθ2 �Sθ1

with respect to the orthogonal basis {θ2b j
α M∗

z bα}m−1
j=0 , which will be used in the proof of the main result of this paper. To 

this end, let v j = θ2b j
α M∗

z bα for all j = 0, . . . , m − 1. Then〈(
PSθ2 �Sθ1

M∗
z

)
v j, vi

〉 = 〈
M∗

z b j
α M∗

z bα,bi
α M∗

z bα

〉
.

Note that

M∗
z bα = − ᾱ

|α|
(
1 − |α|2)S(·,α),

where S(·, α) is the Szegö kernel on D defined by S(·, α)(z) = (1 − ᾱz)−1, z ∈ D. Consequently, for i = j, we have:〈(
PSθ2 �Sθ1

M∗
z

)
v j, vi

〉 = 〈
M∗2

z bα, M∗
z bα

〉 = ᾱ
(
1 − |α|2),

for i > j,〈(
PSθ2 �Sθ1

M∗
z

)
v j, vi

〉 = 〈
M∗

z b j
α M∗

z bα,bi
α M∗

z bα

〉 = 〈
M∗2

z bα,bi− j
α M∗

z bα

〉 = 0,

and for j > i,〈(
PSθ2 �Sθ1

M∗
z

)
v j, vi

〉 = 〈
M∗

z b j
α M∗

z bα,bi
α M∗

z bα

〉 = 〈
M∗

z b j−i
α M∗

z bα, M∗
z bα

〉
= (

1 − |α|2)2〈
M∗

z b j−i
α S(·,α),S(·,α)

〉 = (−α) j−i−1(1 − |α|2)2
,
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where the last equality follows from〈
b j−i
α S(·,α), zS(·,α)

〉 = 〈
b j−i
α S(·,α),bα + αS(·,α)

〉 = 〈
b j−i
α S(·,α),bα

〉 + ᾱ
〈
b j−i
α S(·,α),S(·,α)

〉
= 〈

b j−i−1
α S(·,α),S(·,0)

〉 + ᾱ
(
b j−i
α S(·,α)

)
(α) = (

b j−i−1
α S(·,α)

)
(0) + 0

= (−α) j−i−1.

Therefore,

〈(
PSθ2 �Sθ1

M∗
z

∣∣
Sθ2 �Sθ1

)
v j, vi

〉 =
⎧⎨
⎩

0 if j < i,
ᾱ(1 − |α|2) if j = i,
(−α) j−i−1(1 − |α|2)2 if j ≥ i + 1.

Finally, since Mθ2bi
α

∈ B(H2(D)) is an isometry for any 0 ≤ i ≤ m − 1, we have:

‖vi‖ = ∥∥θ2bi
α M∗

z bα

∥∥ = ∥∥M∗
z bα

∥∥ = (
1 − |α|2)∥∥S(·,α)

∥∥ = (
1 − |α|2) 1

2 .

The computations above then show that the matrix representation of PSθ2 �Sθ1
M∗

z |Sθ2 �Sθ1
with respect to the orthonor-

mal basis { 1√
1−|α|2 v j}m−1

j=0 is the upper triangular matrix with diagonal entries ᾱ and off diagonal entries ( −α) j−i−1(1 −|α|2).

3. Main results

Theorem 3.1. Let SΦ be a Rudin submodule of H2(D2). Then

dim
(
SΦ � (z1SΦ + z2SΦ)

) = 1 + #{n ≥ 0 : αn = 0} < ∞.

Proof. Since {n ≥ 0 : αn = 0} is a finite set, it is enough to show that the equality holds. First, observe that

SΦ � (z1SΦ + z2SΦ) = (SΦ � z1SΦ) ∩ (
ker PSΦ M∗

z2

∣∣
SΦ

) = ker PSΦ M∗
z2

∣∣
SΦ�z1SΦ

.

Now Lemmas 2.1 and 2.2, with ψn = zn , n ≥ 0, and ϕ−1 = 0 imply that

SΦ =
⊕
n≥0

(
zn H2(D) ⊗ (Sϕn � Sϕn−1)

)
,

and

SΦ � z1SΦ =
⊕
n≥0

(
Czn ⊗ (Sϕn � Sϕn−1)

)
.

Then

PSΦ M∗
z2

(SΦ � z1SΦ) = PSΦ

(⊕
n≥0

(
Czn ⊗ M∗

z (Sϕn � Sϕn−1)
))

=
⊕
n≥0

(
Czn ⊗ PSϕn �Sϕn−1

M∗
z (Sϕn � Sϕn−1)

)
,

where for the last equality we have used the fact that PSϕn−1
M∗

z (Sϕn � Sϕn−1) = {0}. Therefore,

ker PSΦ M∗
z2

∣∣
SΦ�z1SΦ

= (
C⊗ ker PSϕ0

M∗
z

∣∣
Sϕ0

) ∞⊕
n=1

(
Czn ⊗ ker

(
PSϕn �Sϕn−1

M∗
z

∣∣
Sϕn �Sϕn−1

))
.

For the first term on the right-hand side, we have ker PSϕ0
M∗

z |Sϕ0
= Cϕ0, that is,

dim
(
ker PSϕ0

M∗
z

∣∣
Sϕ0

) = 1.

On the other hand, the representing matrix of PSϕn �Sϕn−1
M∗

z |Sϕn �Sϕn−1
with respect to the orthonormal basis { 1√

1−|αn−1|2 ·
ϕnbk

αn−1
M∗

z bαn−1 : 0 ≤ k < ln}, as discussed at the end of the previous section, is an upper triangular matrix with ᾱn−1 on 
the diagonal. This matrix is invertible if and only if αn−1 �= 0. In the case of αn−1 = 0, since the supper diagonal entries are 
1, the rank of the representing matrix is ln − 1 and hence the kernel is one-dimensional. This completes the proof. �
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As an illustration of the above theorem, we consider an explicit example of Rudin submodule. Let SR denote the sub-
module of H2(D2), consisting of those functions that have zero of order at least n at (0, αn) := (0, 1 − n−3). This submodule 
was introduced by W. Rudin in the context of infinite rank submodules of H2(D2). It is also well known that such SR is a 
Rudin submodule (see [9,10,12]), that is, SR = SΦ where

ϕ0 =
∞∏

i=1

bi
αi

, ϕn = ϕn−1∏∞
j=n bα j

(n ≥ 1).

In this case, for all n ≥ 1, Sϕn � Sϕn−1 = ϕn(H2(D) � ∏∞
j=n bα j H2(D)). Set

ek :=
( ∞∏

j=k+1

bα j

)
M∗

z bαk (k ≥ 1).

Then {ϕnek}∞k=n is an orthogonal basis for Sϕn � Sϕn−1 , for all n ≥ 1. A similar calculation, as in the end of the previous 
section, shows that the matrix representation of the operator PSϕn �Sϕn−1

M∗
z |Sϕn �Sϕn−1

with respect to {ϕnek}∞k=n is again 
an upper triangular infinite matrix with diagonal entries ᾱk (k ≥ n). Therefore, ker PSϕn �Sϕn−1

M∗
z |Sϕn �Sϕn−1

= {0} for all 
n > 1. Now for n = 1, since α1 = 0 its kernel is one-dimensional. By the same argument, as in the proof of the above 
theorem, we obtain the following result.

Corollary 3.2. Let SR be the Rudin submodule as above. Then SR � (z1SR + z2SR) is a two-dimensional subspace given by

SR � (z1SR + z2SR) = C

∞∏
i=1

bi
αi

⊕C

∞∏
i=2

bi
αi

.

We end this note with an intriguing question, raised by Nakazi [6]: Does there exist a submodule S of H2(D2) with 
rank S = 1, such that S � (z1S + z2S) is not a generating set for S? Although we are unable to determine such (counter-)
example, however, we do have the following special example: let {αn}∞n=0 ⊆ D \ {0} be a sequence of distinct points and Φ =
{ϕn}n≥0, and ϕn := ∏∞

i=n bli
αi . Then, by the main result of this paper, SΦ � (z1SΦ + z2SΦ) = C ⊗Cϕ0 is a one-dimensional, 

non-generating subspace of SΦ . In fact, it follows from [5] that the rank of SΦ is 2.
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