Number theory

Base change for elliptic curves over real quadratic fields

CrossMark

Changement de base pour les courbes elliptiques sur les corps quadratiques réels

Luis Dieulefait ${ }^{1}$, Nuno Freitas ${ }^{2}$
Mathematisches Institut, Universität Bayreuth, 95440 Bayreuth, Germany

A R T I CLE IN F O

Article history:

Received 17 July 2014
Accepted after revision 10 October 2014
Available online 30 October 2014
Presented by Jean-Pierre Serre

Abstract

Let E be an elliptic curve over a real quadratic field K and F / K a totally real finite Galois extension. We prove that E / F is modular.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

R É S U M É

Soit E une courbe elliptique sur un corps quadratique réel K et F / K une extension totalement réele, finie et galoisienne. On demontre que E / F est modulaire.
© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

For F a totally real number field, we write $G_{F}:=\operatorname{Gal}(\overline{\mathbb{Q}} / F)$ for its absolute Galois group. For a Hilbert modular form \mathfrak{f}, we denote by $\rho_{\mathfrak{f}, \lambda}$ its attached λ-adic representation. We say that a continuous Galois representation $\rho: G_{F} \rightarrow \mathrm{GL}_{2}\left(\overline{\mathbb{Q}}_{\ell}\right)$ is modular if there exist a Hilbert newform \mathfrak{f} and a prime $\lambda \mid \ell$ in its field of coefficients \mathbb{Q}_{f} such that we have an isomorphism $\rho \sim \rho_{\mathfrak{f}, \lambda}$. In [1] and [2, Section 5], the first named author proved a base change for the GL_{2} case over \mathbb{Q} [2, Theorem 1.2].

Theorem 1. Let f be a classical modular form of weight $k \geq 2$ and field of coefficients \mathbb{Q}_{f}. For a prime λ of \mathbb{Q}_{f}, write $\rho_{f, \lambda}$ for the attached λ-adic representation. Let F / \mathbb{Q} be a totally real number field. Then the Galois representation $\rho_{f, \lambda} \mid G_{F}$ is (Hilbert) modular in the sense above.

In the recent paper [3], the following modularity theorem is proved.

Theorem 2. Let E be an elliptic curve defined over a real quadratic field K. Then E is Hilbert modular over K.

[^0]The aim of this note is to establish a base change result for certain elliptic curves as a consequence of Theorem 2. More precisely, we prove the following.

Theorem 3. Let E be an elliptic curve over a real quadratic field K. Let also F / K be a totally real finite Galois extension. Then E / F is modular.

This result has applications in the context of the Birch and Swinnerton-Dyer conjecture. Indeed, the modularity of E after base change guarantees that the L-function $L(E / F, s)$ is holomorphic in \mathbb{C} and, in particular, its order of vanishing at $s=1$ is a well-defined non-negative integer, in agreement with what is predicted by the BSD conjecture. Furthermore, the modularity of E / F allows the construction of Stark-Heegner points on E over (not necessarily real) quadratic extensions of F. For details regarding this application, we refer the reader to [4] and the references therein.

2. Elliptic curves with big non-solvable image $\bmod p=3,5$ or 7

Let F / K be a finite extension of totally real number fields. Let E / K be an elliptic curve. We will say that $\bar{\rho}_{E, p}\left(G_{F}\right)$ is big if $\bar{\rho}_{E, p}\left(G_{F\left(\zeta_{p}\right)}\right)$ is absolutely irreducible, otherwise we say it is small. In particular, if $\bar{\rho}_{E, p}\left(G_{F}\right)$ is non-solvable, then it is big. We now restate [3, Theorems 3 and 4].

Theorem 4. Let $p=3,5$ or 7 . Let F / K and E / K be as above. Suppose that $\bar{\rho}_{E, p}\left(G_{F}\right)$ is big. Then E is modular over F.

The following proposition is well-known.

Proposition 2.1. Let F / K be a finite Galois extension of totally real fields and E / K an elliptic curve. Let p be a prime and suppose that $\bar{\rho}_{E, p}\left(G_{K}\right)$ is non-solvable. Then $\bar{\rho}_{E, p}\left(G_{F}\right)$ is non-solvable.

Proof. Since $\bar{\rho}_{E, p}\left(G_{K}\right)$ is non-solvable, we have $p>3$. From Dickson's theorem (see also Proposition 3.1), having $\bar{\rho}_{E, p}\left(G_{K}\right)$ non-solvable implies that projectively $\bar{\rho}_{E, p}\left(G_{K}\right)$ is A_{5} or $\mathrm{PSL}_{2}\left(\mathbb{F}_{p}\right)$ or $\mathrm{PGL}_{2}\left(\mathbb{F}_{p}\right)$. For the last two cases, the proposition is a particular case of [1, Lemma 3.2]. Since A_{5} is a simple group, the same argument as in [1, Lemma 3.2] also applies in this case.

We have the following corollary.
Corollary 2.2. Let F / K and E / K be as in Proposition 2.1. Let $p=3,5$ or 7 . Suppose that $\bar{\rho}_{E, p}\left(G_{K}\right)$ is non-solvable. Then E is modular over F.

Proof. From the previous proposition we have that $\bar{\rho}_{E, p}\left(G_{F}\right)$ is non-solvable, hence it is big. Thus E / F is modular by Theorem 4.

3. Elliptic curves with projective image $\boldsymbol{S}_{\mathbf{4}}$ or $\boldsymbol{A}_{\mathbf{4}} \bmod \boldsymbol{p}=\mathbf{3}, 5$ or 7

Let E / K be an elliptic curve. We have seen that if $\bar{\rho}_{E, p}$ has a big non-solvable image, then after a base change to a totally real Galois extension its image is still non-solvable. We now want to understand what can happen when $\bar{\rho}_{E, p}\left(G_{K}\right)$ is big and solvable. We first recall the following well-know fact.

Proposition 3.1. Let E / K be an elliptic curve. Write G for the image of $\bar{\rho}_{E, p}$ in $\mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)$ and H for its image in $\mathrm{PGL}_{2}\left(\mathbb{F}_{p}\right)$. Then, there are the following possibilities:
(a) G is contained in a Borel subgroup;
(b) G contains $\mathrm{SL}_{2}\left(\mathbb{F}_{p}\right)$;
(c) H is cyclic, G is contained in a Cartan subgroup;
(d) H is dihedral, G is contained in the normalizer of a Cartan subgroup;
(e) H is isomorphic to A_{4}, S_{4} or A_{5}.

Let $p=3,5$ or 7 . Let also G and H be as in the proposition. Remembering that $\operatorname{PSL}_{2}\left(\mathbb{F}_{\ell}\right)$ is simple for $p \geq 5$, by Jordan-Moore's theorem, and that $\mathrm{PSL}_{2}\left(\mathbb{F}_{3}\right) \simeq S_{4}$, we divide the cases where $\bar{\rho}_{E, p}\left(G_{K}\right)$ is big and solvable into two types:
(I) $H \cong S_{4}$ or A_{4},
(II) H is dihedral.

Suppose we are in case (I). Let F / K be a finite Galois extension and set $H_{F}:=\mathbb{P}\left(\bar{\rho}_{E, p}\left(G_{F}\right)\right)$. We would like that H_{F} to be also isomorphic to A_{4} or S_{4}, since this would mean that $\bar{\rho}_{E, p}\left(G_{F}\right)$ is big and Theorem 4 applies. Since F / K is Galois, we have that H_{F} is a normal subgroup of H. Write $I=\{1\}$ for the trivial group and D_{4} for the dihedral group in four elements. The normal subgroups of S_{4} and A_{4} are respectively

- I, D_{4}, A_{4} and S_{4},
- I, D_{4} and A_{4}.

Thus, the cases where Theorem 4 does not apply over F are when the pair of groups $\left(H, H_{F}\right)$ is one of

$$
\begin{equation*}
\left(S_{4}, D_{4}\right), \quad\left(S_{4}, I\right), \quad\left(A_{4}, D_{4}\right), \quad\left(A_{4}, I\right) \tag{1}
\end{equation*}
$$

Since we are working with totally real fields, the complex conjugation has projective image of order 2 . Thus the cases with $H_{F}=I$ cannot happen.

3.1. A Sylow base change

We now deal with the remaining cases from (1). Recall that we want to base change E / K to F where F / K is finite and Galois. Suppose that $\left(H, H_{F}\right)$ is $\left(S_{4}, D_{4}\right)$ or $\left(A_{4}, D_{4}\right)$. Let F_{3} be a subfield of F such that the Galois group $\operatorname{Gal}\left(F / F_{3}\right)$ is a 3-Sylow subgroup of $\operatorname{Gal}(F / K)$. In particular, F / F_{3} is a solvable extension. We shall shortly prove the following.

Lemma 3.2. The projective image $H_{F_{3}}:=\mathbb{P}\left(\bar{\rho}_{E, p}\left(G_{F_{3}}\right)\right)$ is isomorphic to S_{4} or A_{4}. In particular, $\bar{\rho}_{E, p}\left(G_{F_{3}}\right)$ is big.
From this lemma and Theorem 4, it follows that E / F_{3} is modular. Finally, an application of Langlands solvable base change (see [6]) allows us to conclude that E / F is modular.

For the proof of Lemma 3.2, we will need the following elementary lemma from group theory.
Lemma 3.3. Let G be a profinite group. Let $M \subset G$ be a subgroup of finite index i. Let N be a normal subgroup of G. Write j for the index of $M /(N \cap M)$ in G / N. Then $j \mid i$.

Proof. We prove it for the case of finite groups. The required divisibility follows from the following elementary equalities:

$$
\begin{aligned}
& |G|=|N| \cdot[G: N], \\
& |M|=|N \cap M| \cdot[M: N \cap M] .
\end{aligned}
$$

Dividing the first equality into the second, we conclude that j divides i.
Proof of Lemma 3.2. Let F_{3} be as above and set

$$
G:=\operatorname{Gal}(\overline{\mathbb{Q}} / K), \quad M:=\operatorname{Gal}\left(\overline{\mathbb{Q}} / F_{3}\right), \quad N:=\operatorname{Ker}\left(\mathbb{P} \bar{\rho}_{E, p}\right)
$$

Let L / K be the Galois extension fixed by N. Observe that $L / L \cap F_{3}$ is Galois and

$$
G / N \cong \operatorname{Gal}(L / K), \quad M /(M \cap N) \cong \operatorname{Gal}\left(L / L \cap F_{3}\right)
$$

From Lemma 3.3, we see that

$$
\left[\operatorname{Gal}(L / K): \operatorname{Gal}\left(L / L \cap F_{3}\right)\right]=j \mid i=[G: M]
$$

and we also have

$$
|\operatorname{Gal}(L / K)|=j\left|\operatorname{Gal}\left(L / L \cap F_{3}\right)\right|
$$

Note that $\operatorname{Gal}\left(L / L \cap F_{3}\right) \cong H_{F_{3}}$. From the way we choose F_{3} it is clear that $3 \nmid i$, hence $3 \nmid j$. By hypothesis $G / N \cong S_{4}$ or A_{4}, hence 3 divides $|\operatorname{Gal}(L / K)|$ and $\left|H_{F_{3}}\right|$. Finally, the conditions $3\left|\left|H_{F_{3}}\right|\right.$ and $D_{4} \subset H_{F_{3}}$ together imply that $H_{F_{3}}$ is isomorphic to S_{4} or A_{4}.

We summarize this section into the following corollary.
Corollary 3.4. Let F / K be a finite Galois extension of totally real fields. Let E / K be an elliptic curve. Suppose that for $p=3,5$ or 7 we have that $\bar{\rho}_{E, p}\left(G_{K}\right)$ is big and solvable. Suppose further that $\mathbb{P}\left(\bar{\rho}_{E, p}\left(G_{K}\right)\right) \cong S_{4}$ or A_{4}. Then E / F is modular.

Everything we have done so far works for any Galois extension F / K. Moreover, it is clear that the remaining cases are those when $\bar{\rho}_{E, p}\left(G_{K}\right)$ is small or projectively dihedral simultaneously for $p=3,5,7$. The restriction in the statement of Theorem 3 to quadratic fields arises precisely from dealing with them, which is the content of the next section.

4. Elliptic curves having small or projective Dihedral image at $\boldsymbol{p}=3,5$ and 7

Let K be a real quadratic field. From Theorem 4 an elliptic curve E / K is modular over K except possibly if $\bar{\rho}_{E, p}\left(G_{K}\right)$ is small simultaneously for $p=3,5,7$. Suppose $K \neq \mathbb{Q}(\sqrt{5})$. In [3], it is shown that such an elliptic curve gives rise to a K-point on one of the following modular curves:

$$
\begin{aligned}
& X(\mathrm{~b} 5, \mathrm{~b} 7), \quad X(\mathrm{~b} 3, \mathrm{~s} 5), \quad X(\mathrm{~s} 3, \mathrm{~s} 5), \\
& X(\mathrm{~b} 3, \mathrm{~b} 5, \mathrm{~d} 7),
\end{aligned} \quad X(\mathrm{~s} 3, \mathrm{~b} 5, \mathrm{~d} 7), \quad X(\mathrm{~b} 3, \mathrm{~b} 5, \mathrm{e} 7), \quad X(\mathrm{~s} 3, \mathrm{~b} 5, \mathrm{e} 7), \text {, }
$$

where b and s respectively stand for 'Borel' and 'normalizer of split Cartan'. The notation d7 and e7 is explained in [3, Section 10]; here we remark only that they indicate mod 7 level structures that are respectively finer than 'normalizer of split Cartan' and 'normalizer of non-split Cartan'. Denote by \mathcal{E}_{K} the set of elliptic curves (up to quadratic twist) corresponding to K-points in the previous modular curves. In [3] it is also shown that an elliptic curve $E / \mathbb{Q}(\sqrt{5})$ with simultaneously small image for $p=3,5,7$ gives rise to a $\mathbb{Q}(\sqrt{5})$-point in one of the following modular curves:

$$
X(\mathrm{~d} 7), \quad X(\mathrm{e} 7), \quad X(\mathrm{~b} 3, \mathrm{~b} 7), \quad X(\mathrm{~s} 3, \mathrm{~b} 7)
$$

Denote by $\mathcal{E}_{\mathbb{Q}(\sqrt{5})}$ the set of elliptic curves (up to quadratic twist) corresponding to $\mathbb{Q}(\sqrt{5})$-points in these four modular curves.

Furthermore, it also follows from [3] that, for any real quadratic field K, we have:
(i) \mathcal{E}_{K} contains all elliptic curves (up to quadratic twist) with small or projective dihedral image simultaneously at $p=$ 3, 5, 7;
(ii) \mathcal{E}_{K} is finite;
(iii) let $E \in \mathcal{E}_{K}$. Then, either E is a \mathbb{Q}-curve or E has complex multiplication or $\bar{\rho}_{E, 7}\left(G_{K}\right)$ contains $\operatorname{SL}_{2}\left(\mathbb{F}_{7}\right)$.

We can now easily prove the following.
Corollary 4.1. Let K be a real quadratic field. Let $E \in \mathcal{E}_{K}$. Let F / K be a finite totally real Galois extension. Then E / F is modular.
Proof. From (iii) above, we know that either (a) E / K is a \mathbb{Q}-curve or has complex multiplication or (b) $\bar{\rho}_{E, 7}\left(G_{K}\right)$ is nonsolvable. Suppose we are in case (a). Base change follows from [5, Proposition 12.1] in the CM case; if E is a \mathbb{Q}-curve, by results of Ribet and Serres' conjecture (now a theorem due to Khare-Wintenberger), it arises from a classical modular form thus base change follows by Theorem 1. In case (b), it follows from Corollary 2.2 that E / F is modular.

5. Proof of the main theorem

Let K be a real quadratic field and E / K an elliptic curve. Write $\bar{\rho}_{p}=\bar{\rho}_{E, p}$. The curve E / K must satisfy at least one of the following three cases:
(1) $\bar{\rho}_{p}\left(G_{K}\right)$ is big and non-solvable for some $p \in\{3,5,7\}$,
(2) $\bar{\rho}_{p}\left(G_{K}\right)$ is big, solvable and satisfy $\mathbb{P}\left(\bar{\rho}_{p}\left(G_{K}\right)\right) \cong S_{4}, A_{4}$ for some $p \in\{3,5,7\}$,
(3) E / K belongs to the set \mathcal{E}_{K}.

Let F / K be a totally real finite Galois extension. In each case, modularity of E / F now follows directly from one of the previous sections:

Case (1): this is Corollary 2.2.
Case (2): this is Corollary 3.4.
Case (3): this is Corollary 4.1.

Acknowledgements

We would like to thank Kęstutis Česnavičius, José María Giral, Victor Rotger and Samir Siksek for their useful comments. We also thank the anonymous referee for his comments.

References

[1] L. Dieulefait, Langlands base change for GL(2), Ann. Math. 176 (2012) 1015-1038.
[2] L. Dieulefait, Automorphy of Symm ${ }^{5}$ (GL(2)) and base change (with Appendix A by R. Guralnick and Appendix B by L. Dieulefait and T. Gee), submitted for publication, http://arxiv.org/abs/1208.3946.
[3] N. Freitas, B.V. Le Hung, S. Siksek, Elliptic curves over real quadratic fields are modular, Invent. Math. (2014), http://dx.doi.org/10.1007/s00222-014-0550-z, in press.
[4] X. Guitart, V. Rotger, Y. Zhao, Almost totally complex points on elliptic curves, Trans. Amer. Math. Soc. 336 (2014) 2773-2802.
[5] H. Jacquet, R.P. Langlands, Automorphic Forms on GL(2), Lect. Notes Math., vol. 114, Springer-Verlag, Berlin, 1970.
[6] R.P. Langlands, Base Change for GL(2), Ann. Math. Stud., vol. 96, 1980.

[^0]: E-mail addresses: Idieulefait@ub.edu (L. Dieulefait), nunobfreitas@gmail.com (N. Freitas).
 1 The first-named author was supported by the MICINN Grant MTM2012-33830 and ICREA Academia Research Prize.
 2 The second-named author was supported through a grant within the framework of the DFG Priority Programme 1489 Algorithmic and Experimental Methods in Algebra, Geometry and Number Theory (grant number Sto 299/11-1).
 http://dx.doi.org/10.1016/j.crma.2014.10.006
 1631-073X/© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

