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RESUME

Dans cette note, nous considérons un probléme de propagation d’ondes électromagnétiques
en régime harmonique dans une cavité bornée, dans le cas ol la cavité contient
de petites inclusions parfaitement conductrices. Nous montrons que la solution de ce
probléme dépend continuement des données de maniére uniforme vis-a-vis de la taille
des inclusions.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Version francaise abrégée

On considére deux ouverts lipschitziens bornés £2,D c R? tels que 0 € £2, et on pose £25 := {X € £2, X/8 ¢ D}. On
considére également w > 0 ainsi que deux fonctions a valeurs matricielles €,  : £2 — C3*3 uniformément bornées pour
lesquelles il existe €, 1, > 0 tels que €,|y|> < Re{yTe(X)y} et 1. |y|? < Nefy' w(X)y} pour tout x € 2,y € R3. Sous I'hypo-
thése que w n’est pas une fréquence de résonance du probléme de Maxwell dans §2 avec condition de conducteur parfait
sur le bord, on démontre (voir Théoréeme 2.1) qu'il existe deux constantes C, §o > 0 indépendantes de § telles que, pour tout
u € Ho(curl, £25) := {u e L>(£2s), curl(u) € L*(£25), u x n=0 on 9525}, on a :
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0. Introduction

In this note, £2,D C R3 refer to bounded Lipschitz open sets with 0 € £2. Set 25 := {x € £2, x/8 ¢ D} and & =R>\D.
Let €, u: 22— C3*3 refer to bounded matrix valued functions such that there exist constants €, Uy > 0 with e*|y|2 <
Ne{yTe®)y} and .|y < Re{y'uX)y} for all x € £2,y € R3. The matrices € and w stand respectively for the electric
permittivity and the magnetic permeability of the medium. We also consider a fixed frequency w > 0, and study the corre-
sponding Maxwell source problem

us € Ho(curl, £25) such that
(1)

curl?, (us) — w?eus =f in 25,

where Hg(curl, £25) := {u € L*(£2s), curl(u) € L?>(£25), u x n = 0 on 9525}, and curli := curl(u ' curl -). Here f ¢
Hp(curl, §£25)* is an arbitrarily chosen right hand side. It is well established that, for any fixed § > 0, the problem above
is of Fredholm type with index 0, i.e. it admits a unique solution except for a discrete set of eigenfrequencies, see, e.g., [7].
In the present note, we will assume that w is not an eigenfrequency of the limit problem associated with § =0 (where
20 = £2), and we wish to show that, for f fixed, the solution remains uniformly bounded as § — 0.

Although this kind of asymptotic stability result is well known for many different situations in the case of scalar elliptic
problems (see [8-14]| for example), Maxwell’s equations have received much less attention.

A series of works [2,1,3,6] deals with electromagnetic scattering in homogeneous ambient media containing small pen-
etrable heterogeneities. In such situations, the propagation medium is fixed, i.e. the perturbed problem is posed in the
same domain as the limit problem. On the other hand, the contributions [4]| and [5, Chap. 3| deal with the asymptotics of
perfectly conducting (impenetrable) objects embedded in a homogeneous medium by means of boundary integral equation
techniques. It provides a stability estimate for a second kind integral equation (the so-called MFIE), and deduces asymptotic
formulas for the electromagnetic fields in a region of the domain located at a fixed positive distance from the small scat-
terers. The analysis in [4,5] strongly relies on boundary integral representation formulas, adopting a very different approach
compared to [2] as regards stability.

Adapting the proof of stability contained in [2] to the case of perfectly conducting inclusions seems difficult at first sight
because, in this case, the medium of propagation varies as § — 0, which prevents the use of compact embedding theorems
that play a key role in the approach of [2]. This is the goal of the present note to show how to circumvent this difficulty by
means of an asymptotic version of Hardy’s inequality.

1. Asymptotic Hardy inequality

In the sequel, for any bounded Lipschitz open set O c R3, the space L%(0), resp. L>(O) := L*(0)3, will refer to

square integrable functions, resp. fields, equipped with the norm ||v||f2 ©) = fo |v|? dx. Moreover we consider the spaces

H(curl, ©) := {u € L2(0), curl(u) € L2(0)}, and Hy(curl, ©) := {u € H(curl, ®), u x n = 0} equipped with the norm
\|v||ﬁ(cm,w) = ||v\|iz(0) + |\curl(v)||iz(0), where n refers to the normal vector to dO. In addition, X(O) will refer to the

fields v € Ho(curl, ©) such that div(ev) € L2(0) and fz ev-ndo =0 for each connected component X of 90, equipped
with the norm

||"||)2((O) = |curl(v) ”iZ(O) + | div(ev) ”52(0) + ”"”52(0)‘

The space X(©) is compactly embedded into L2(©), see [17].

Lemma 1.1. There exist constants C, g > 0 independent of § such that

2
C/def VIR, YVEX(25), V8 e O,8).

82 + |X|2
8
Proof. Let W(Z) refer to the closure of eggmp(i) = {v|z, ve C®(R3)3, supp(v) bounded} with respect to the norm
IVIycz) == S= (T +IEP) T VE)>dE + chrl(v)lle(E) + ||div(v)||fz<5). Set in addition Wo(&) = {ve W(Z), vxn=0on 35},
which is a closed subspace of W(Z). According to Lemma 6 in [15], if I'j, j=0,1, ..., ] refer to the connected components
of 92, there exists C > 0 such that
J
lw(&)|? dg . -
c/ TiEe < eurdw) |12, 5, + [divew) | > 5, +) || w-ndo| vweWy(5). 2)

o j=1
IS J I
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Choose a fixed t > 0 small enough to guarantee B(0, 2t) C £2, and let x : R®> — R, refer to a € cut-off function such that
xX) = x(x]) =1 for |x| <t and x (x) =0 for |x| > 2t. Also set ¢ :=1 — x. Clearly,

-1 2 _ _
/ (X1 +8%) " [y v | dx < t 2 VI ) <t 2 VIR, V8 >0, YV e X($2s). (3)
£2s
Take an arbitrary v € X(§25) and denote ws(y) := x (3y)v(8y). By definition of X(£25), we have v x n =0 on 9£25, which

implies ws x n=0 on 9Z. Moreover we have /2" ndo =0 for any connected component X of 9525, which implies
frj w; -ndo =0 for all j= .n. Since ws has bounded support, ws € Wy(&), so we can apply (2). Using the change of

variable y = x/§, we deduce that there exist constants C, C’ > 0 independent of § such that

|x Ov(x)|? lws (y) |2 2 . 2
52 + X2 X=34 111yl dy < 3C(”c“ﬂ(wﬁ)”ﬂ(5) + ||d1V(W5)”L2(5))
25 =
< C(chrl(xv)”iz(m) + || diviw) ||i2(95)) < C' VI, (4)

Since v was chosen arbitrarily and ¥ + x = 1, to conclude the proof, there only remains to gather inequalities (3) and (4). O

2. Stability theorem

In the sequel, Ho(curl, ©)* will refer to the topological dual to Hg(curl, ©). The duality pairing will be denoted (,)o,
and we equip this space with the natural dual norm || fllngcurt,©)* = SUPyeHy(curt,O)\j0} [{f> V) OI/IIVIIH(curt, 0)-

Theorem 2.1. Assume that curli — w?e : Hy(curl, 2) — Ho(curl, £2)* is an isomorphism (i.e. @ is not a resonant frequency of

the limit problem). Then there exist constants C, 8o > 0 independent of § such that curli — w?e : Hy(curl, 25) — Ho(curl, £25)* is
invertible for all § € [0, 8], with the uniform bound

2 2

. . llcurly, (u) — w*€u|lgy(curl, 25)
0<C< inf inf K otcurl, 25) .
8€[0,80] ueHo (curl, 25)\{0} llullH(curt, 25)

Proof. For the sake of brevity, we define the continuous operator As : Ho(curl, 25) — Ho(curl, £25)* by (As(u),v)o, :=
f 2 w Teurl(u)curl(v) — w?(euw)vdx for all u, v e Ho(curl, $25). We will proceed by contradiction, assuming that there exist
sequences &, — 0 and u, € Ho(curl, £25,) such that [[un|lHecurl,@;,) =1 and limy— o [|As, (Un) Hg (curt, 25)« = 0. We set f; :=
As, (up).

Consider Hp(curl = 0, £25) := {v € Hy(curl, £2;5) | curl(v) = 0}, which is obviously a closed subspace of Hg(curl, £2;5). Let
U, refer to the unique element of Ho(curl =0, §2;,) satisfying fﬂa‘n €(uy —uy)vdx =0 for all ve Ho(curl =0, §25,). We have
in particular

6>x<||un|||-[(cm-1 25) = =< g)‘e{ / (fun)ﬁndx} = |w|_2|<fn, ﬁn)an )
s,

which implies limy— oo [0 [|H(curt, 2;,) = 0. Set i, ;= u, — 0, and f, := A;, (1;). We will obtain a contradiction if we prove

that 1imy_ oo ||t [lH(urt, 25,) = 0. Note that |[fullug(curt,25,)* < IfallHo(curt,25,)* + CllnllHecurt,2;,) — O for C = w?supg |€].
Besides, since Vo € Ho(curl =0, §2;5,) for any ¢ € H(l)(.an), we obtain:

/div(eﬁn)(pdx=/e(un—ﬁn)V(pdx=O, (5)
25 2,

which yields div(eu;) =0 in §2;5,. Observe in addition that any ¢ € H!(£2) that is constant in each connected component of
£2\ £25, also satisfies Vg € Ho(curl =0, £25,). Proceeding like in (5), we conclude that fr(eﬁn) -ndo =0 for any I" that is
a connected component of 3£2s. This shows that u, € X(£2s,). Moreover, since ||ty [lx(g2;,) < lunllaceun, 25,) + 10 laccur, 25,)»
we have:

limsup [ [1x(2,,) < +oc.
n—-oo

Consider now a €™ cut-off function v : R*> — R, such that ¥ (x) = ¥ (|x|) =1 for |x| >2 and ¥ (x) =0 for |x| <1, set
Yn(X) := ¥ (X/8n), and denote Q, :={X € §2 | §, < |X| < 28,}. Using extension by 0 inside £2 \ £25,, we can consider that ¥, u,
belongs to X(£2). This is actually a bounded sequence of X(£2). Indeed 5;2 < 5/(5,% + |x|?) for X € Q,. As a consequence,
applying Lemma 1.1, we obtain the existence of two constants C, C’ > 0 independent of n, such that
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| eurl (i) [ 12 ) = C|leurd@n) |12 o, | + Cor 2InliE,

L2 |, (x)]2
< C||curl(ay,) ”1-2(95,1> +C 7+ X
n
- i ()2 -
< C||curl(ay,) ||L2(98") +C / 1 P dx < 'l g,
n

Sn

for all n > 0. We prove in a similar manner that ||div(1/f5nﬁ,,)||1_z(9) remains bounded as n — oo. From this, we finally con-
clude that limsup,,_, o, [¥ntlnlIx(2) < +00. So according to the compact embedding of X(£2) into L2(£2), see [17], extracting
a subsequence if necessary, there exists o, € X(£2) such that limp, o ||l — 8eolly2(2) = 0 and @i, converges weakly towards
i in X(2).

Take any test function w € X, (£2) := {v e X(£2), v=0 in a neighborhood of 0}. Since @, coincides with 11, on supp(w)
for n large enough, weak convergence implies that limy— oo (As, (W), W) 2, = limp— 0o (Ao (¥nlin), W) 2 = (Ag(lxo), W2 = 0.
Since X, (£2) is dense into X(£2) (see [16, Prop. 5.14]), this leads to the conclusion that Agli,, = 0 and, as we assumed that
Ap is an isomorphism, we finally conclude that @i, = 0. Observe that supp(1 — ;) C B(0, 28,). From this, and Lemma 1.1,
we conclude that there exist constants C, C’ > 0 independent of n such that

it (x)|*

~ 12 ~ 2 2
101 gy ) < 20l ) + €82 f P

B(0,28,)
~ 2 19215 112
= 2||wnuﬂ||L2(9) +C 511 ”un“X(.Q,sn)'

Since limsup,_, o [[8nllx(25,) < +00 and [[¥nlinll2(o) = U lli2(m) = 0 we conclude that limp ||ﬁn||]_z(95n) = 0. This fi-
nally leads to a contradiction, since we assumed that ||ty ||H(curl, 2,,) = 1 and, at the same time, we have:

1 2 o2 ~ 2
Euun”l-[(mrl,gan) = un”Lz(gén) + ||un||x(95n)

< Il g, + (142 sgp|e|) I8nl2 g, + Pl . B) ey, [ =2 0. O
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