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In this note, we study a class of resonance gradient elliptic systems and obtain infinitely 
many nontrivial solutions by using critical point theory.
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r é s u m é

Dans cette Note, nous étudions une classe de systèmes elliptiques de gradient de résonance 
et obtenons une infinité de solutions non triviales en utilisant la théorie des points 
critiques.

© 2014 Published by Elsevier Masson SAS on behalf of Académie des sciences.

1. Introduction and main results

We consider the following elliptic system{−�u = λu + δv + f (x, u, v), in Ω,

−�v = δu + γ v + g(x, u, v), in Ω,

u = v = 0, on ∂Ω,

(P)

where Ω is a bounded smooth domain in RN (N ≥ 3) and λ, δ, γ ∈ R. The nonlinearities ( f , g) are the gradient of some 
function, that is, there exists a function F ∈ C1(Ω × R, R) such that ∇ F = ( f , g). The system goes into resonance if the 
following conditions holds:

(V) σ
(

A∗) ∩ σ(−�) �= ∅,

where
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A∗ =
(

λ δ

δ γ

)
; σ

(
A∗) = {ξ, ζ } =

{
λ + γ

2
±

√(
λ − γ

2

)2

+ δ2

}

denotes the spectrum of the matrix A∗ and σ(−�) = {λk : k = 1, 2, · · · and 0 < λ1 < λ2 < · · ·} denotes the eigenvalues of 
the Laplacian on Ω with zero boundary conditions.

A vast literature on the study of the existence and multiplicity of solutions for resonance elliptic systems via the critical 
point theory has grown since Costa and Magalhães published their paper [6]; see [5,11–15,17] and the references therein. 
In [6], Costa and Magalhães consider subquadratic perturbations of semilinear elliptic systems that are in variational form. 
Later, Zou [14] presented two different theorems. If ∇ F is not odd, is sublinear and satisfies certain assumptions at infinity 
(and near the origin), classical linking theorems with the Cerami compactness condition can be used to prove the existence 
of at least one (nontrivial) solution to (P). Furthermore, if the nonlinear term ∇ F is odd and (P) is a strongly resonant 
problem, one can obtain solutions under suitable hypotheses on F and by using a multiplicity theorem due to Fei [7]. 
In particular, this result holds for a single elliptic equation at resonance. Zou et al. [17] get the existence of one and of 
two nonzero solutions in the case where the problem is resonant and F is sublinear at zero and infinity. Zou [15] considers 
cooperative and noncooperative elliptic systems that are asymptotically linear at infinity. He obtains infinitely many solutions 
with small energy if the potential is even. Pomponio [13] consider an asymptotically linear cooperative elliptic system at 
resonance. Recently, Ma had generalized Zou’s results [14,15,17] in [11] and [12], respectively. Very recently, Chen and Ma 
[5] studied a class of resonant cooperative elliptic systems with sublinear or superlinear terms and obtained infinitely many 
nontrivial solutions by two variant fountain theorems developed by Zou [16]. In the present paper, we study the existence 
of infinitely many non-trivial solutions to (P) under the symmetric condition. By using the minimax methods in critical 
point theory, we obtain the multiplicity results for subquadratic cases, which generalizes and sharply improves the results 
in [5,11,14]. Furthermore, compared with their proofs, ours are much simpler. For more general operator, we refer the reader 
to the papers [3,4,9]. We cite the very recent monograph by Kristály, Rădulescu and Varga [10] as a general reference for 
the basic notions used in the paper.

Let | · | and (·, ·) denote respectively the usual norm and inner product in R2. We consider the subquadratic case and 
make the following assumptions:

(AF1) There exist constants c > 0 and 1 < p < 2∗ := 2N
N−2 such that∣∣∇ F (x, U )

∣∣ ≤ c
(
1 + |U |p−1), ∀(x, U ) ∈ Ω ×R

2.

(AF2) F (x, 0) = 0, for all x ∈ Ω , and

lim|U |→0

F (x, U )

|U |2 = +∞ uniformly for a.e. x ∈ Ω.

(AF3) F (x, U ) = F (x, −U ), ∀(x, U ) ∈ Ω ×R
2.

Our main results are as follows:

Theorem 1.1. Suppose that (V), (AF1)–(AF3) are hold, then problem (P) possesses infinitely many nontrivial solutions.

Remark 1.2. Zou [15] studied systems (P) that are asymptotically linear with resonance. Applying the minimax technique, 
they obtained the following theorem.

Theorem 1.3. Assume the following conditions are satisfied:

(C1) |∇ F (x, U )| ≤ c(1 + |U |σ ) for almost all x ∈ Ω and U ∈ R
2 , where σ ∈ (0, 1) is a constant.

(C2) lim inf|U |→+∞ ±F (x,U )

|U |1+σ := a±(x) 
 0 uniformly for almost all x ∈ Ω , where a±(x) 
 0 indicates that a±(x) ≥ 0 with strict 
inequality holding on a set of positive measure.

(C3) There exist δ1 , δ2 ∈ (1, 2), c1 > 0, c2 > 0, t0 > 0 such that

c1|U |δ1 ≤ F (x, U ) ≤ c2|U |δ2

for almost all x ∈ Ω and |U | ≤ t0 .
(C4) F (x, −U ) = F (x, U ) for a.e. x ∈ Ω and U ∈R

2 .

Then, (P) has infinitely many small-energy solutions.

Subsequently, Chen and Ma [5] considered the subquadratic case and proved the following theorem.

Theorem 1.4. Suppose that (V) and the following conditions are satisfied:
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(D1) F (x, U ) ≥ 0, ∀(x, U ) ∈ Ω ×R
2 , and there exist constants μ ∈ [1, 2) and R1 > 0 such that(∇ F (x, U ), U

) ≤ μF (x, U ), ∀x ∈ Ω and |U | ≥ R1.

(D2) There exist constants a ∈ [1, 2) and c2 , c′
2 , R2 > 0 such that

F (x, U ) ≥ c′
2|U |a, ∀x ∈ Ω and U ∈ R

2

and

F (x, U ) ≤ c2|U |, ∀x ∈ Ω and |U | ≤ R2.

(D3) lim inf|U |→∞ F (x,U )
|U | ≥ d > 0 uniformly for x ∈ Ω .

and F (x, U ) is even in U . Then (P) possesses infinitely many nontrivial solutions.

Theorem 1.1 unifies and greatly extends Theorems 1.3 and 1.4. (C2) and (C3) in Theorem 1.3 and (D2) and (D3) in 
Theorem 1.4 are completely removed. Hence, Theorem 1.1 generalizes and significantly improves upon Theorems 1.3 and 1.4. 
There exist functions F satisfying our Theorem 1.1 and not satisfying Theorems 1.3 and 1.4. For example, let

F (x, U ) = h(x)|U |3/2
(

− ln

(
1 + |U |2

4

))

for all x ∈ Ω and U ∈ R
2, where h ∈ L1(Ω; R+) with infx∈Ω h(x) > 0. A straightforward computation shows that F satisfies 

the conditions of Theorem 1.1, but it does not satisfy the corresponding conditions of Theorems 1.3 and 1.4, since F (x, U ) < 0
for all |U | > √

3, and lim|U |→∞ |∇ F (x, U )| = +∞ uniformly for x ∈ Ω .

2. Variational framework

In this section, we give the variational framework of our problem and some related preliminary lemmas.
In the following, we use ‖ · ‖2 and ‖ · ‖L2 to denote the norms of L2(Ω) and L2(Ω) × L2(Ω), respectively. Let E := H1

0(Ω)

and W := H1
0(Ω) × H1

0(Ω), where H1
0(Ω) is the usual Sobolev space with the norm ‖ · ‖E generated by the inner product

〈u, v〉E =
∫
Ω

∇u · ∇v dx, ∀u, v ∈ H1
0(Ω).

Then for U = (u1, u2) and V = (v1, v2) in W , the induced inner product and norm on W are given respectively by

〈U , V 〉W = 〈u1, v1〉E + 〈u2, v2〉E and ‖U‖2
W = ‖u1‖2

E + ‖u2‖2
E .

Let −→e1 := (e11, e12), −→e2 := (e21, e22) ∈R
2 be the normalized eigenvectors of A∗ such that

A∗−→e1 = ξ
−→e1, A∗−→e2 = ζ

−→e2,
−→e1 · −→e2 = 0, |−→e1| = |−→e2| = 1.

For any α ∈ R. Let H+
α , H−

α , H0
α be the subspaces of H1

0(Ω), where the quadratic form

u → ‖u‖2
E − α‖u‖2

2

is positive definite, negative definite and zero, respectively. Let

W 0 := H0
ξ × H0

ζ , W + := H+
ξ × H+

ζ and W − := H−
ξ × H−

ζ .

Set

A1 := id − ξ(−�)−1 and A2 := id − ζ(−�)−1,

where id denotes the identity on H1
0(Ω). We introduce an operator:

A : W → W , A = (A1, A2), which is defined by AU = (A1u1, A2u2),∀U = (u1, u2) ∈ W .

Then A is a bounded self-adjoint operator from W to W and ker A = W 0 with dim W 0 < ∞. The space W splits as

W = W − ⊕ W 0 ⊕ W +,

where W − and W + are invariant under A, A|W − is negative, and A|W + is positive definite. More precisely, there exists a 
positive constant c0 such that
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±〈
AU±, U±〉

W ≥ c0
∥∥U±∥∥2

W , ∀U± ∈ W ±.

Here and in what follows, for any U ∈ W , we always denote by U 0, U+ and U− the vectors in W with U = U 0 + U− + U+ , 
U 0 ∈ W 0 and U± ∈ W ± . Note that dim W 0 and dim W − are finite. Furthermore, σ(A∗) ∩ σ(−�) �= ∅ implies dim W 0 �= 0. 
For problem (P), we consider the following functional:

Φ(U ) = 1

2
〈AU , U 〉W −

∫
Ω

F̃ (x, U )dx, U = (u1, u2) ∈ W ,

where F̃ (x, s, t) = F (x, s �e1 +t �e2). In view of the assumptions of F and the definition of F̃ , we know that the (weak) solutions 
to system (P) are the critical points of the functional Φ by the discussion of [6].

Next, we define an equivalent inner product 〈·, ·〉 and the corresponding norm ‖ · ‖ on W given respectively by

〈U , V 〉 = 〈
AU+, V +〉

W − 〈
AU−, V −〉

W and ‖U‖ = 〈U , U 〉1/2,

where U , V ∈ W 0 ⊕ W − ⊕ W + with U = U 0 + U− + U+ and V = V 0 + V − + V + . Therefore, Φ can be rewritten as

Φ(U ) = 1

2

∥∥U+∥∥2 − 1

2

∥∥U−∥∥2 −
∫
Ω

F̃ (x, U )dx.

Furthermore, Φ ∈ C1(W , R) and the derivatives are given by

Φ ′(U )V = 〈
U+, V +〉 − 〈

U−, V −〉 − ∫
Ω

(∇ F̃ (x, U ), V
)

dx,

for any U , V ∈ W 0 ⊕ W − ⊕ W + with U = U 0 + U− + U+ and V = V 0 + V − + V + .
For the sublinear case, we will use the following critical point theorem established by Kajikiya [8]. We refer the readers 

to [1] for the definition and proprieties of genus.

Definition 2.1. Let X be a Banach space and A a subset of X . A is said to be symmetric if u ∈ A implies −u ∈ A. For a closed 
symmetric set A that does not contain the origin, we define a genus γ (A) of A by the smallest integer k such that there 
exists an odd continuous mapping from A to Rk \ {0}. If there does not exist such a k, we define γ (A) = ∞. Moreover, we 
set γ (∅) = 0. Let Γk denote the family of closed symmetric subsets A of X such that 0 /∈ A and γ (A) ≥ k.

Theorem 2.2. Let X be an infinite dimensional Banach space and I ∈ C1(X, R) satisfy (B1) and (B2) below.

(B1) I is even, bounded from below, I(0) = 0 and I satisfies the (PS) condition.
(B2) For each k ∈N, there exists an Ak ∈ Γk such that supu∈Ak

I(u) < 0.

Then I admits a sequence of critical points {uk} such that I(uk) ≤ 0, uk �= 0 and limk→∞ uk = 0.

Note that dim W 0 and dim W − are finite. We choose an orthonormal basis {em}k
m=1 for W 0, an orthonormal basis 

{em}l0
m=k+1 for W − and an orthonormal basis {em}∞m=l0+1 for W + , where 1 ≤ k < ∞ and k + 1 ≤ l0 < ∞. Then {em}∞m=1 is an 

orthonormal basis of W .

3. Proof of the main results

Proof of Theorem 1.1. We consider the truncated functional

I(U ) = 1

2

∥∥U+∥∥2 −
(

1

2

∥∥U−∥∥2 +
∫
Ω

F̃ (x, U )dx

)
h(‖U‖)

for all U ∈ W , where h :R+ → [0, 1] is a non-increasing C1 function such that h(t) = 1 for 0 ≤ t ≤ 1 and h(t) = 0 for t ≥ 2. 
Obviously, I ∈ C1(W , R) and I(0) = 0. If we can prove that I admits a sequence of critical points {Uk} such that I(Uk) ≤ 0, 
Uk �= 0 and Uk → 0 as k → ∞, then we can apply Kajikiya’s critical point theorem (Theorem 2.2) to get the desire results. 
Due to (AF3), F (x, −U ) = F (x, U ) for all (x, U ) ∈ Ω ×R

2, so I(U ) = I(−U ), that is I is even.
For ‖U‖ ≥ 2, we have that

I(U ) = 1

2

∥∥U+∥∥2
,

which shows that
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I(U ) → +∞, as ‖U‖ → ∞.

This implies that I is bounded from below and satisfies the (PS) condition. Actually, due to the coercitivity of the func-
tional I , we can get a (PS) sequence {U j} bounded. By the fact of dim(W 0 ⊕ W −) < ∞, without lose of generality, we may 
assume

U−
j → U−, U 0

j → U 0, U+
j ⇀ U+ and U j ⇀ U , as j → ∞, (1)

for some U = U 0 + U− + U+ ∈ W = W 0 ⊕ W − ⊕ W + . By virtue of the Riesz Representation Theorem, I ′ : W → W ∗
and G ′ : W → W ∗ can be viewed as I ′ : W → W and G ′ : W → W respectively, where W ∗ is the dual space of W and 
G(U ) := ∫

Ω
F̃ (x, U ) dx. Note that

o(1) = I ′(U j) = U+
j − (

U−
j + G ′(U j)

)
, ∀ j ∈ N,

that is,

U+
j = U−

j + G ′(U j) + o(1), ∀ j ∈N. (2)

Note that the assumptions of F and the definition of F̃ , the Sobolev embedding, by the standard argument (see [2]), imply 
G ′ : W → W ∗ is compact. Therefore, G ′ : W → W is also compact. Due to the compactness of G ′ and (1), the right-hand side 
of (2) converges strongly on W , and hence U+

j → U+ in W . Combing this with (1), we have U j → U in W . Therefore, I
satisfies the (PS) condition.

Given any k ≥ k1 := l0 + 1, where l0 is defined as in Section 2, let Ek = ⊕k
j=1 X j , where X j = span(e j), where {e j} is an 

orthogonal basis of W . There exists a constant ck > 0 such that

‖U‖L2 ≥ ck‖U‖, ∀U ∈ Ek, ∀k ∈N,

by the equivalence of the norms on the finite-dimensional spaces Ek . Using (AF2), there exists 0 < r1 < 1 such that

F (x, U ) ≥ 1

c2
k

|U |2,

for all |U | ≤ r1 and a.e. x ∈ Ω . Therefore, for U ∈ Ek with ‖U‖ = lk := 1
2 min{1, r1

ck
}, we obtain:

I(U ) = 1

2

∥∥U+∥∥2 − 1

2

∥∥U−∥∥2 −
∫
Ω

F̃ (x, U )dx

≤ 1

2

∥∥U+∥∥2 −
∫
Ω

F̃ (x, U )dx

≤ 1

2
‖U‖2 − 1

c2
k

‖U‖2
L2

≤ 1

2
‖U‖2 − 1

c2
k

c2
k‖U‖2

= −1

2
‖U‖2

= −1

2
l2k ,

which implies that

{
U ∈ Ek : ‖U‖ = lk

} ⊂
{

U ∈ W : I(U ) ≤ −1

2
l2k

}
.

Now taking Ak = {U ∈ W : I(U ) ≤ − 1
2 l2k }, by Theorem 2.2, we get that:

γ (Ak) ≥ γ
({

U ∈ Ek : ‖U‖ = lk
}) ≥ k,

so Ak ∈ Γk and

sup
U∈Ak

I(U ) ≤ −1

2
l2k < 0.

The proof is complete. �
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