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In this paper the well-known Bernstein’s inequality for complex polynomials is extended 
to the quaternionic setting. We also show that the Erdős–Lax’s inequality does not hold in 
general, but it works for a particular class of polynomials.
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r é s u m é

Dans cet article, l’inégalité de Bernstein, bien connue pour les polynômes de C, est prouvée 
pour les polynômes quaternioniques. Nous démontrons que l’inégalité de Erdős–Lax n’est 
pas valide, en général, mais qu’elle est valide pour un ensemble particulier de polynômes.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction and preliminaries

One of the most known polynomial inequality with important applications in approximation theory is the following 
Bernstein’s inequality for complex polynomials.

Theorem 1.1 (See Bernstein [1], Riesz [9]). If P (z) is an algebraic polynomial of degree n with complex coefficients, then

∥∥P ′∥∥ ≤ n · ‖P‖,
where the norm of P is defined by ‖P‖ = max|z|≤1 |P (z)| = max|z|=1 |P (z)|.

The goal of this paper is to extend the above theorem in the quaternionic setting. The refinement of the Bernstein’s inequal-
ity conjectured by Erdős and proved by Lax [7], stating that
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∥∥P ′∥∥ ≤ n

2
· ‖P‖, (1)

for those polynomials P that do not have a zero in the open unit disk of C, does not hold in the quaternionic setting, as 
we show in Section 3. The refined result (1) holds, however, for a subclass of the quaternionic polynomials of degree n.

We begin with some preliminaries on quaternions.
The noncommutative field H of quaternions consists of elements of the form q = x0 + x1i + x2j + x3k, xi ∈ R, i = 0, 1, 2, 3, 

where the imaginary units i, j, k satisfy i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j. The real number x0 is 
called real part of q, and is denoted by Re(q), while x1i + x2j + x3k is called vector part or imaginary part of q and is 
denoted by Im(q). We define the norm of a quaternion q as |q| =

√
x2

0 + x2
1 + x2

2 + x3
3. By S we denote the unit sphere of 

purely imaginary quaternions, i.e. S = {q = ix1 + jx2 + kx3, such that x2
1 + x2

2 + x3
3 = 1}. The set of elements of the form 

a + Ib when I varies in S is a 2-dimensional sphere denoted by [a + Ib]. A quaternion q belongs to the sphere S if and 
only if it satisfies the equation q2 − 2aq + (a2 + b2) = 0. Note that if I ∈ S, then I2 = −1. For any fixed I ∈ S we define 
CI := {x + I y | x, y ∈ R}, which can be identified with a complex plane. Obviously, the real axis belongs to CI for every 
I ∈ S. For more information we refer the reader to [2].

Since the multiplication in H is not commutative, one can consider unilateral quaternionic polynomials, namely poly-
nomials with coefficients on one side or even polynomials which are sum of monomials of the form a1qa2q . . .qan . In this 
paper we consider unilateral polynomials, and we treat the case where the coefficients are written on the right. Thus we 
call right polynomial or, in this context, simply polynomial, of degree ≤ n an expression P (q) of the form

n∑
k=0

qkak, ak ∈H, k = 0, . . . ,n. (2)

For details on quaternionic polynomials we refer the reader to the classical book [6]. Two quaternionic polynomials P1(q) =∑n
i=0 qiai , P2(q) = ∑m

i=0 qibi are multiplied as follows

(P1 ∗ P2)(q) =
∑

i=0,...,n, j=0,...,m

qi+ jaib j.

If P1 has real coefficients the ∗-multiplication coincides with the pointwise multiplication. It is also important to recall the 
following result, see [5,6], about the zeros of polynomials:

Theorem 1.2.

(i) A quaternion α is a zero of a (nonzero) polynomial P (q) if and only if the polynomial q − α is a left divisor of P (q).
(ii) If P (q) = (q − α1) ∗ · · · ∗ (q − αn), where α1, . . . , αn ∈ H, then α1 is a zero of P and every other zero of P belong to the spheres 

[αi], i = 2, . . . , n.
(iii) If P has two distinct zeros in an equivalence class [α], then all the elements in [α] are zeros of P .

From this result, it follows that the zeros of a polynomial P (q) are either isolated points or spheres.
The choice to treat the case of right polynomials is suggested by the fact that in the sequel we will make use of some 

results that are valid in the framework of left slice regular functions and right polynomials are a subset of this class of 
functions.

Let us recall that, given an open set Ω in H, and a function f : Ω → H, real differentiable, we say that f is left slice 
regular if for every I ∈ S, its restriction f I to the complex plane CI =R + IR, satisfies 1

2 ( ∂
∂x + I ∂

∂ y ) f I (x + I y) = 0, on Ω ∩CI .
Also, recall that a set Ω is said to be axially symmetric if the sphere [q] belongs to Ω whenever q belongs to Ω . Let 

D J be any open set in C J = {x + J y | x, y ∈R}, J ∈ S. The set ΩD J = ⋃
x+ J y∈D J , I∈S{x + I y} is called the axially symmetric 

completion of D J in H.
The derivative of the polynomial P (q) = ∑n

k=0 qkak is

P ′(q) =
n∑

k=1

kqk−1ak

and it is consistent with the notion of slice derivative, see [2,4].
A Gauss–Lucas type theorem in the quaternionic setting, which will be used in the next section, is in [10] and can be 

formulated as follows:

Theorem 1.3. Let P (q) = ∑n
k=0 qkak with quaternionic coefficients ak. Then the zeros of P ′(q) are in the axially symmetric completion 

of the convex hull K(Z P s ) of the zero set Z P s of P s, where P s = P c ∗ P = P ∗ P c and P c(q) = ∑n
k=0 qkak.
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2. Bernstein’s inequality

The main result of the paper is the following Bernstein’s inequality in the quaternionic setting.

Theorem 2.1. If P is a quaternionic polynomial of degree n, then
∥∥P ′∥∥ ≤ n · ‖P‖

where the norm of P is defined by ‖P‖ = max|q|≤1 |P (q)| = max|q|=1 |P (q)|.

Proof. For the simplicity of the proof, we divide it into four steps.

Step 1. Define Q (q) = Mqn and f (q) = Q −1(q) ∗ P (q) = 1
M q−n P (q), where M = max|q|=1 |P (q)|. We show that

∣∣ f (q)
∣∣ ≤ 1 for all |q| ≥ 1. (3)

Indeed, f is slice regular as function of q for |q| > 1 and | f (q)| = 1
M |P (q)| ≤ 1, for all |q| = 1. Then, denoting P (q) =∑n

k=0 qkak and q̃ = q−1, after simple calculation we can clearly write f (q) = h(q̃), where h(q̃) = 1
M

∑n
k=0(q̃)n−kak is slice 

regular for |q̃| < 1, and since |q| = 1, if and only if |q̃| = 1, we also have |h(q̃)| = | f (q)| ≤ 1, for all |q̃| = 1.
Applying the maximum modulus theorem (see Theorem 3.4 in [4]), it follows that |h(q̃)| ≤ 1 for all |q̃| ≤ 1, which by the 

equality h(q̃) = f (q), immediately implies (3).

Step 2. We prove that all the zeroes of the (left) regular polynomial of degree n, g(q) = P (q) − Q (q)λ = P (q) − qnλM , 
where λ ∈H satisfies |λ| > 1, belong to the open unit ball B(0; 1).

Indeed, let q0 ∈ H be with g(q0) = P (q0) − Q (q0)λ = 0. We have two subcases: (a) Q (q0) 
= 0 (i.e. q0 
= 0); (b) Q (q0) = 0
(i.e. q0 = 0).

In subcase (a), we get |P (q0)| = |λ| · |Q (q0)| > |Q (q0)| = M · |qn
0|, which immediately implies | f (q0)| = | 1

M q−n
0 P (q0)| > 1

and by (3) we necessarily get |q0| < 1.
In subcase (b), we trivially have |q0| < 1, since q0 = 0.

Step 3. We show that all the zeroes of gs also are included in B(0; 1), where gs is defined as in the statement of 
Theorem 1.3.

Indeed, since gs = g ∗ gc with gc(q) = qn(an − Mλ) + ∑n−1
k=0 qkak and (g ∗ gc)(q) = 0 if and only if g(q) = 0 or, if g(q) 
= 0

then gc(g(q)−1qg(q)) = 0, taking into account the conclusion of Step 2 too, we immediately obtain the conclusion of Step 3.

Step 4. Denoting by Z gs the zero set of gs and by K(Z gs ) the convex hull of Z gs , from Step 3 we have Z gs ⊂ B(0; 1), 
which implies that the axially symmetric completion of K(Z gs ) is included in the closed ball B(0;1). Applying now Theo-
rem 1.3, it follows that g′(q) = P ′(q) − Q ′(q)λ has all its zeroes in |q| ≤ 1, i.e. in other words for all |λ| > 1 and |q| > 1, we 
have g′(q) 
= 0, which is equivalent to |[Q ′(q)]−1 P ′(q)| 
= |λ| > 1.

This clearly implies |[Q ′(q)]−1 P ′(q)| ≤ 1, for all |q| > 1, i.e. |P ′(q)| ≤ |Q ′(q)|, for all |q| > 1. From the continuity of 
P ′ and Q ′ , for any |q0| = 1 and taking a sequence qm with |qm| > 1, limm→∞ qm = q0, we easily get that |P ′(q0)| ≤
|Q ′(q0)|. This implies |P ′(q)| ≤ |Q ′(q)| = nM|q|n−1, for all |q| ≥ 1 and passing to maximum with |q| = 1 we obtain
max|q|=1 |P ′(q)| ≤ nM , which proves the theorem. �
Remark 1. It is evident that a similar inequality holds for polynomials of degree n which are right slice regular, that is for 
polynomials of the form P (q) = ∑n

k=0 akqk , with ak ∈ H.

3. Erdős–Lax’s inequality

An improvement of Theorem 1.1 proved by Lax in [7], but first conjectured by Erdős, states that if P (z) is an algebraic 
polynomial of degree n with complex coefficients that has no zero in the disk |z| < 1, then (1) holds. In general, the 
inequality (1) cannot be extended to the present setting, in fact we have:

Theorem 3.1. The Erdős–Lax inequality is not valid, in general, for quaternionic polynomials.

Proof. Let P (q) = (q − i) ∗ (q − j) = q2 − q(i + j) + k. The only root of this polynomial is q = i, see [8], namely q = i has 
multiplicity 2, thus P (q) has no roots in the open unit ball B and is of degree 2. We will show that for this polynomial the 
Erdős–Lax inequality does not hold.

Let q = eIθ , where I = ai + bj + ck, a2 + b2 + c2 = 1. The proof is divided into two steps.

Step 1. It is immediate that P ′(q) = 2q − (i + j). Then, we have

P ′(eIθ ) = 2 cos θ + i(2a sin θ − 1) + j(2b sin θ − 1) + k(2c sin θ),

and with some computations we obtain
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∣∣P ′(eIθ )∣∣2 = 6 − 4(a + b) sin θ.

Also, we observe that

max
I∈S,θ∈[0,2π)

∣∣P ′(eIθ )∣∣2 = max
(
6 − 4(a + b) sin θ

) ≥ 6 + 4
√

2, (4)

since maxa2+b2+c2=1(a + b) = maxa2+b2=1(a + b) = max(a + √
1 − a2) = √

2.

Step 2. Let us now compute

P
(
eIθ ) = e2Iθ − eIθ (i + j) + k

= cos(2θ) + a sin θ + b sin θ + i
(
a sin(2θ) − cos θ + c sin θ

)

+ j
(
b sin(2θ) − cos θ − c sin θ

) + k
(
c sin(2θ) − a sin θ + b sin θ + 1

)
.

Some lengthy but simple computations show that
∣∣P

(
eIθ )∣∣2 = 4 − 4a sin θ + 4c cos θ sin θ.

It is clear that |P (eIθ )|2 is maximum when −4a sin θ + 4c cos θ sin θ is maximum. We have

sin θ(−4a + 4c cos θ) ≤ ∣∣sin θ(−4a + 4c cos θ)
∣∣ ≤ 4

∣∣(−a + c cos θ)
∣∣ ≤ 4

(|a| + |c|) ≤ 4
√

2,

the last inequality resulting from maxa2+b2+c2=1(|a| + |c|) = maxa2+c2=1(|a| + |c|) = max(|a| + √
1 − a2) = √

2. Thus

max
I∈S,θ∈[0,2π)

∣∣P
(
eIθ )∣∣2 ≤ 4 + 4

√
2. (5)

From inequalities (4), (5) it follows that

∥∥P ′∥∥ ≥ (
6 + 4

√
2
)1/2

>
(
4 + 4

√
2
)1/2 ≥ ‖P‖ = 2

2
· ‖P‖

and so the statement follows. �
We note that the Erdős–Lax’s inequality holds true at least for a class of polynomials, as the following result shows.

Proposition 3.2. Let P (q) be a polynomial of degree n with quaternionic coefficients that has no zero in the ball |q| < 1. Assume that 
the zeros of P (q) are either spheres and/or real points and that there exists at most one isolated zero α ∈ H \R that has multiplicity 1. 
Then

∥∥P ′∥∥ ≤ n

2
· ‖P‖.

Proof. If P has exactly one isolated nonreal zero α of multiplicity 1, then it factorizes as

P (q) = (q − α) ∗ (q − α1) . . . ∗ (q − αr)
(
q2 − 2 Re(a1)q + |a1|2

)
. . .

(
q2 − 2 Re(as)q + |as|2

)

where the factors (q − αi), (q2 − 2 Re(ai)q + |ai |2) might appear or not and might be repeated if the real points and/or the 
spheres appear with multiplicity greater than 1. The spheres are uniquely determined by Re(ai), |ai | and so we can choose 
a1, . . . , as on the complex plane CI to which α belongs. If P does not have any nonreal isolated zero, then we can choose 
any CI . Thus, in both cases, we have

P (q) = (q − α1) ∗ · · · ∗ (q − αr) ∗ (q − α) ∗ (q − a1) ∗ (q − ā1) . . . (q − as) ∗ (q − ās),

where (q − α) might appear or not and all the factors commute with respect to the ∗-product and where, of course, the 
∗-product of the factors (q − αi) coincides with the pointwise product. For the sake of simplicity, we change the notation 
and write

P (q) =
∗n∏

i=1

(q − bi),

where bi = αi , i = 1, . . . , r, br+1 = α and br+2i = ai , i = 1, . . . s, br+1+2i = āi , i = 1, . . . s. Using the fact that the factors 
commute, since the bi ’s are all on the same complex plane, we then have

P (q)−∗ =
∗n∏

(q − bi)
−∗
i=1
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and so

P (q)−∗ ∗ P ′(q) =
n∑

i=1

(q − bi)
−∗.

Let now q and ξ inside the unit ball B = {q ∈H : |q| < 1} and let us consider the polynomial

Q (q) = nP (q) − P ′(q) ∗ (q − ξ). (6)

We claim that Q (q) 
= 0 in the unit ball. Since P (q) is nonzero in B we can consider

n + P (q)−∗ ∗ P ′(q) ∗ (ξ − q) = n +
n∑

i=1

(q − bi)
−∗ ∗ (ξ − q)

=
n∑

i=1

(
1 + (q − bi)

−∗ ∗ (ξ − q)
) =

n∑
i=1

(q − bi)
−∗(ξ − bi). (7)

Recall that (q − bi)
−∗ = ((q − b̄i) ∗ (q − bi))

−1(q − b̄i), and since ( f ∗ g)(q) = f (q)g( f (q)−1qf (q)) when f (q) 
= 0 otherwise 
( f ∗ g)(q) = 0, see [2], Proposition 4.3.22, we can write

(q − bi)
−∗ = (

(q − b̄i)(q̃ − bi)
)−1

(q − b̄i) = (q̃ − bi)
−1,

where q̃ = (q − b̄i)
−1q(q − b̄i) is obtained from q with a rotation. So we have

n + P (q)−∗ ∗ P (q) ∗ (ξ − q) =
n∑

i=1

(q̃ − bi)
−1(ξ − bi). (8)

Let us now consider the map w(p) = (q̃ − p)−1(ξ − p), where q̃, ξ ∈ B are considered as two parameters. When |p| ≥ 1 we 
have |ξ − q̃w| = |q̃||q̃−1ξ − w| ≥ |1 − w| from, which we deduce that the map w(p) is a transformation taking the exterior 
of the unit ball B to a ball B ′ not containing 0, in fact, since q̃, ξ ∈ B, neither 0 nor ∞ can belong to B ′ . Now note that 
w(bi) ∈ B ′ , but then it is immediate to verify that also their arithmetic mean 1

n

∑n
i=1(q̃ − bi)

−1(ξ − bi) belongs to B ′; since 
B ′ does not contain 0, the arithmetic mean and thus the sum at the right-hand side of (8) cannot be zero. By multiplying 
on the right by P (q) 
= 0, we have that also Q (q) 
= 0 in B, as stated. The conclusion of the theorem follows as in [3], 
Theorems 4 and 5. In fact, assume that for any q ∈ B we have that P (q) = w belongs to some subset S of H. Then for any 
q, ξ ∈ B we have:

1

n
P ′(q)ξ + P (q) − 1

n
qP ′(q) ∈ S. (9)

To show this fact, take λ /∈ S , so that P (q) 
= λ. By writing (6) in the case of the polynomial P (q) − λ, we obtain that 
P ′(q) ∗ (ξ − q) + nP (q) 
= nλ for q, ξ ∈ B, which proves (9). To prove the assertion in the statement, we now assume that 
the polynomial P of degree n satisfies |P (q)| ≤ M for q ∈ B and that P (q) has no roots in B. Then we set S = {q ∈ H : 0 <
|w| < M}. Since (9) says that the interior of a ball with radius |P ′(q)|/n belongs to S and since S is deprived of its center, 
it follows that the radius |P ′(q)|/n of the ball is less than M/2, that is ‖P ′‖ ≤ n

2 ‖P‖. �
Remark 2. The bound is optimal as it can be seen by taking the polynomial P (q) = (1 + qn)/2.
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