C. R. Acad. Sci. Paris, Ser. I 353 (2015) 31-34

Contents lists available at ScienceDirect

C. R. Acad. Sci. Paris, Ser. |

www.sciencedirect.com

Partial differential equations/Numerical analysis

Hybrid high-order methods for variable-diffusion problems @CmssMark
on general meshes

Méthodes hybrides d’ordre élevé pour des problémes a diffusion variable
sur des maillages généraux

Daniele A. Di Pietro?, Alexandre Ern”

4 University Montpellier-2, I3M, 34057 Montpellier cedex 5, France
b University Paris-Est, CERMICS (ENPC), 77455 Marne-la-Vallée cedex 2, France

ARTICLE INFO ABSTRACT
ArtiC{e history: We extend the Hybrid High-Order method introduced by the authors for the Poisson
Received 11 July 2014 problem to problems with heterogeneous/anisotropic diffusion. The cornerstone is a local

Accepted 20 October 2014

‘ ; discrete gradient reconstruction from element- and face-based polynomial degrees of
Available online 3 November 2014

freedom. Optimal error estimates are proved.
Presented by Olivier Pironneau © 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

RESUME

Nous étendons la méthode hybride d’ordre élevé congue par les auteurs pour le probléme
de Poisson a des problémes de diffusion hétérogéne/anisotrope. La pierre angulaire est une
reconstruction locale du gradient discret a partir des degrés de liberté polynomiaux sur les
éléments et les faces. On établit des estimations d’erreur optimales.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let 2 C RY, d € {2, 3}, denote an open, bounded, polytopic domain. Let f € L2(£2) and, for a subset X C £2, denote by
(-,-)x and |-|lx the inner product and norm in L?(X), respectively. We focus on the following variable-diffusion problem:
Find u € Ug := H}(£2) such that

kVu,Vv)o =(f,v)e Vvely, (1)

where k is a bounded, tensor-valued function in §2, taking symmetric values with lowest eigenvalue uniformly bounded
from below away from zero. Owing to the Lax-Milgram Lemma, problem (1) is well-posed.

The approximation of diffusive problems on general polytopic meshes has received an increasing attention lately. Sev-
eral low-order methods have been developed; see, e.g., [8,3] and references therein. Recently, high-order methods have
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also become available; we mention the high-order Mimetic Finite Difference (MFD) schemes [1,9], the Virtual Element
Method [2], and the Mixed High-Order [6] and Hybrid High-Order (HHO) [7,5] methods. For the latter, the degrees of
freedom (DOFs) are scalar-valued polynomials at mesh elements and faces up to some degree k > 0 (as for the MFD
schemes in [9]), and element-based DOFs can be eliminated by static condensation. The construction hinges on (i) a lo-
cal discrete gradient reconstruction of order k and (ii) a least-squares local penalty that weakly enforces the matching
between element- and face-based DOFs while preserving the order of the gradient reconstruction. This design leads to op-
timal energy- and L2-norm error estimates; cf. [7] for the Poisson problem (k being the identity tensor in (1)) and [5] for
(quasi-incompressible) linear elasticity.

The purpose of the present work is to extend the HHO method of [7] to the variable-diffusion problem (1). The key idea
is to modify the gradient reconstruction so as to take into account the diffusion tensor k. Then, adapting the ideas of [7], we
prove stability of the discrete problem and derive optimal error estimates. We make the reasonable assumption that there
is a partition P of £2 so that k is piecewise Lipschitz. For simplicity of exposition, we also assume that « is a piecewise
polynomial; otherwise, an additional quadrature error has to be accounted for. In applications from the geosciences, ¥ can
often be taken piecewise constant.

2. Discrete setting and local gradient reconstruction

We consider admissible mesh sequences in the sense of [4, Sect. 1.4]. Each mesh 7}, in the sequence is a finite collection
{T} of nonempty, disjoint, open, polytopic elements such that 2 = Ureﬂ, T and h= maxre7;, hr (with hy the diameter of
T), and there is a matching simplicial submesh of 7, with locally equivalent mesh size and which is shape-regular in the
usual sense. For all T € Ty, the faces of T are collected in the set Fr. In an admissible mesh sequence, card(F7) is uniformly
bounded, the usual discrete and multiplicative trace inequalities hold on element faces, and the L?-orthogonal projector onto
polynomial spaces enjoys optimal approximation properties on each mesh element [4, Chapter 1]. Let a polynomial degree
k >0 be fixed. For all T € T, we define the local space of DOFs as UX :=Pk(T) x Xrer, PX_ (F)}, where PX(T) (resp.,
P§—1(F)) is spanned by the restrictions to T (resp., F) of d-variate (resp., (d — 1)-variate) polynomials of total degree <k.
In what follows, local DOFs are underlined. Furthermore, A < B denotes the inequality A < CB with positive constant C
independent of the meshsize h and the diffusion tensor k. We assume that each mesh 7, in the sequence is compatible

with the partition P associated with the diffusion tensor. We denote by K? and K% the lowest and largest eigenvalue of

in T, respectively, and we introduce the local heterogeneity/anisotropy ratio pr := K%/K; > 1. In what follows, we explicitly

track the dependency of the bounds on the ratio pr. To avoid the profileration of symbols, we assume that for all T € 7y,
the Lipschitz constant of k in T, say LY, satisfies L} < K%.
For all T € 7, we define the local gradient reconstruction operator G’} :Q’; — VIP’Z;“ (T) such that, for all vy :=

(vr, (VF)Fer;) € UX and all w e PA1(T),

(ICG’;-KT, VW)T =(kVvr,Vw)r + Z (VF —vr, VW-K-RTF)F, 2)
FeFr

which can be computed by solving a local (well-posed) Neumann problem in IP’S“ (T). We introduce the potential re-
construction operator p% : UX — PXT1(T) such that, for all vy € UX, Vphvy := Gkvy and [, phvy = [pvr (phvy is
well-defined since G’}LT € V]P’EH(T)). Finally, we define the local interpolation operator 1’} HY(T) - Q’} such that, for
all ve HU(T), Xv = (mkv, (Tkv)Fer,), where 7k and 7} are the L?-orthogonal projectors onto PX(T) and PX_, (F), re-
spectively.

Lemma 2.1 (Approximation properties for p’}[’} ). The following holds for all v e H**2(T) with o = 1/2 if k¢ is piecewise constant and
o =1 in the general case:
1 3
Jv— p’ﬂl%"”T + hT/2 v - plﬂl%v”ar +hr|V(v - plﬂl%") I+ +h7(2 V(v plﬂlév) lar < p%h’?—z Vil ez ry- (3)

Proof. Let v € H*2(T). A direct calculation using (2), the definitions of p’} and L’}, and integration by parts shows that, for
all we IP”C‘IH (M),

(kV(v— p’ﬂ’%v), Vw), = (k —kr)V(v - n#v), vw), — Z (n’F‘v — n#v, Vw-(k — k1) nE) s
FeFr

where k7 denotes the mean-value of k¥ in T. Note that the right-hand side vanishes if k is piecewise constant. In the
general case, owing to the assumptions on k and using the approximation properties of the L2-orthogonal projectors along
with a discrete trace inequality for ||k"/>Vw/||F, we infer that

|,V (v — PEIEV), VW) | S LShrhS vl e oo IV W S FRETH IV i o IV Wl 7 (4)
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We now observe that

€29 (v = P 1w |7 = (¥ (v = p I v), V(v = 4 1v)) 4 (9 (v = D tv), V(e Ty = phiv)) . (5)
Denote by ¥; and ¥, the addends on the right-hand side of (5). Using the Cauchy-Schwarz inequality and the approx-
imation properties of 7rk+1, we obtain |T{| < |k*V(v — p’ﬂ’}v)lh(/cg)l/zhll‘-ﬂ VIl grr2(ry- When k is piecewise constant,
T, vanishes, so that using Young’s inequality yields ||V (v — pKIKv)|Ir < (K-?-)_l/ZHICl/ZV(V phIkvyir < ,ol/zthrl VI ez ry -
In the general case, using (4) with w = (kv — pkkv) and since ||V (rktly pTI" Wt = IVl — pkikvyr <
IV (v — pXI%v)|ir owing to the H!-stability of the projector 7X+!, we infer that |T2| < ,o (/cT)'/zhk+1 VIl e (g 1 V2V (v =

pTl’}v)IIT, which leads to the estimate on ||V (v — pTﬂ}v)HT in (3). The other terms in (3) are then bounded as in [7,
Lemma 3]. O

Remark 1 (o« =0). It is also possible to take o = 0 whenever, for all T € 7y, the eigenvectors of k|7 are constant and its
eigenvalues satisfy, with obvious notation, |A(x) — Ar| ShrA(x) for all xe T.

3. Discrete problem and stability

For all T € Ty, we introduce the local bilinear forms ar and st on Q’} X Q’} such that

KF
ar(ur, vr) = (KGlur. Gfvr)y +sr(up.vp). st vp) = Y o= (7 (ur = Phur). 7 (ve = Piyr))p. (6)
FeFr
with kf := |-k -n7g| ) and P’; :Q’; — ]P";H(T) is such that P’;KT vr + (pTvT n#p’TvT) We define the global

space of DOFs by patching interface values, so that Q’,ﬁ = {XTe’ﬁ, IP’Q(T)} X {XFEJ-';. ]P’é_1 (F)}, and, for all T € 7, and
all vy, e Q’fl, we denote by vy the local DOFs of v, in Q’}. The discrete problem consists in seeking uy € Q;‘LO ={v, =
(VD) 1eTss (VE)Fer,) € Uy | v =0 VF € Fp) such that

an(y, vy) = Y ar(ur,vp)= Y (f,vr)r = ln(vy) Vv, €U, (7)

TeTh TeTh

To analyze the stability of the discrete problem, we introduce the following seminorm on Q’;:

el 7= [V vel7 + 30 e —vri: (8)
FeFr

and we set ||1h||i_h = Zreﬁ Pfl ||17||,2C ; for all v, eg’,;. Observe that |-||¢ ; is a norm on Q’g o

Lemma 3.1 (Stability). The following inequalities hold for all vy € Q’;':

p el 2
lvrler Sar@r,vp) S prllvrlie T 9)

Consequently, ||vh||K h San(vy, vy) forall vy, e Uk and problem (7) is well-posed.

Proof. We adapt the proof of [7, Lemma 4]. Concerning the face terms, we obtain

KF 2 1/2 ok 2 KF 2 1/2 ok 2
Z —IvF —vrlF EST(XT7!T)+PT||K/2G;1T|Tv st(Vr,vp) S Z E”VF—VT||F+:0T||’C/ZG;1T“T'

hg
FE]'-T FG}-T
(10)
To compare [k "2GKv |t and |[k>Vvr |1, we observe that, for all w € IP’g“(T) and all F e Fr,
KF 2
IVw-ke-nzel} < (Ingeicngel, [Vw-k-Vw]) < EIIKVZVwHT, (11)

where we have used the Cauchy-Schwarz inequality for «, the definition of kF, and a discrete trace inequality. Taking w =
vr in the definition (2) of GKv yields [lk?Vvr|2 = (kGX vy, Vvr)r — > ker; (VE— v, Vrke-nge)r. Hence, using (11),
a discrete trace inequality for ||k 2V vr | f, the first bound in (10), por > 1, and Young’s inequality yields

[V vr|7 < e Ghvr |7+ > Z_F”VF —vrl2 < pr |2 GKvr |7 +srvr. vo).
FeFr
(kG vy, Vw)r

M 2vwir
above bounds yields (9), and the rest of the proof is straightforward. O

Since ||IC1/ZCIT<-KT It = SUpWG]Pngl and proceeding similarly leads to ||K1/2G’}1T It S lvylle,7- Combining the
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4. Error analysis

Theorem 4.1 (Energy-error estimate). Let u € Ug solve (1) and let u, € U" 1.0 solve (7). Assume that u|r € H*2(T) forall T € Ty,. Then,

letting Uy, := ((nTu)Teﬁ, (nFu)pefh) € U 1.0 and, recalling the definition of o from Lemma 2.1, the following holds with consistency
error Ep(vy) == an (U, vp) — Ih(vy):

1/2

~ 1+2a 3. 2(k+1

Iy~ tplen S sup eh<v,,)<{ZKTp 22 ’nunHmm} : (12)
vReUf o, 1V llen=1 TeTh

Proof. We adapt the proof of [7, Theorem 8]. The first inequality in (12) is an immediate consequence of Lemma 3.1.

Proceeding as in (7] with iy := p§Ty = p§ 15 (ujr) and v, € Uf ; with [|vy[len =1 leads to

En(vp) =Y (kV@r —u),Vvr) + Y > (ve—vr, (Vig — Vuykengg) .+ Y sp(ly, vy).

TeTh TeTy FeFr TeTh

Denote by %1,%,,%3 the three terms on the right-hand side. Combining the results of Lemmas 2.1 and 3.1, we
infer that |T1 + T21* < Yrer; KT,o”zahz(kH)||u||Hk+2(T) Moreover, since st(dy,vy) < st(Uy,dy) st(vy, vp)"2, pro-
ceeding as in [7] for the first factor, and using the second bound in (10) for the second factor yields [T3]%2 <

1420 2(k+1)
ZTEﬁ, KTIO ah ”u”Hk+2(T) O

Finally, adapting the proof of [7, Theorem 10] and [5, Corollary 12] leads to the following L?-norm error estimate.

Theorem 4.2 (L2-error estimate). Assume elliptic regularity for problem (1) in the form 1zl 22y < llgllg for all g € L?(£2) and

z € Ug solving (1) with data g. Assume f € H*t5(£2) with § =0 for k > 1 and § = 1 for k = 0. Then, using the same notation as in
Theorem 4.1, the following holds:

1/2
T I R A B L A B LA
TeTy

124+a

where |(k%)2p 2ty poo 1= m.alxreﬁ(KT)V2 hr and pkuy 1 := pkuy forall T € Ty
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