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r é s u m é

On obtient un lien continu entre les cas du disque et du demi-plan dans le théorème de 
Grace, ainsi que de nouveaux domaines de zéros non cerclés, qui sont invariants par la 
convolution de Schur–Szegő.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

1.1. Main results

Let Ω be a connected set in C. Depending on whether Ω is bounded or unbounded, we denote by πn(Ω) the set of all 
polynomials of degree n or ≤ n with zeros only in Ω . A polynomial g(z) = ∑n

k=0 bk zk of degree n is called a multiplier of 
πn(Ω) if the convolution

( f ∗ g)(z) :=
n∑

k=0

akbkzk

of g with every f (z) = ∑n
k=0 akzk in πn(Ω) again belongs to πn(Ω). We denote the set of multipliers of πn(Ω) by Mn(Ω). 

The pre-coefficient class π∗
n (Ω) of a connected set Ω ⊂ C is the set of all polynomials f (z) = ∑n

k=0 bk zk for which
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Fig. 1. The sets Ω−(1+γ ),γ (grey area) for certain values of γ .

Fig. 2. The sets Iγ (dark grey) and Oγ (light grey) for certain values of γ .

f (z) ∗ (1 + z)n =
n∑

k=0

(
n

k

)
bkzk ∈ πn(Ω).

In this note we show that for every open or closed disk Ω ⊂ C that contains the origin in its interior there is an 
associated set Ω∗ ⊂ C such that Mn(Ω) = π∗

n (Ω∗).
In order to give an explicit description of the sets Ω∗ , note that, as explained in [5], for every open disk or half-plane Ω

that contains the origin, there are two unique parameters τ ∈ C \ {0} and γ ∈ [0, 1] such that Ω is the image of the open 
unit disk D := {z ∈ C : |z| < 1} under a Möbius transformation of the form

wτ ,γ (z) := τ z

1 + γ z
.

We write Ωτ,γ for such a domain and note that, for all τ ∈ C \ {0} (cf. also Fig. 1),

Ωτ,0 = {
z ∈ C : |z| < |τ |} and Ωτ,1 =

{
z ∈ C : �(

τ−1z
)
<

1

2

}
. (1)

For γ ∈ [0, 1) we also define

Iγ := {
z ∈C : |z| + γ |1 + z| < 1

}
and Oγ := {

z ∈C : |z| − γ |1 + z| > 1
}
.

Iγ and Oγ are families of sets that, when γ increases from 0 to 1, decrease from I0 = D and O 0 = C \D to

I1 :=
⋂

γ ∈[0,1)

Iγ = [−1,0] and O 1 :=
⋂

γ ∈[0,1)

Oγ = (−∞,−1], (2)

respectively. For γ ∈ (0, 1), Iγ is the interior of the inner loop of the limaçon of Pascal, and Oγ is the open exterior of the 
limaçon of Pascal (cf. Fig. 2).

Our main result can now be stated as follows.

Theorem 1.1. Let τ ∈ C \ {0} and γ ∈ [0, 1]. Then

(i) Mn(Ωτ,γ ) =Mn(Ωτ,γ ) = π∗
n (Iγ ), and

(ii) Mn(C \ Ωτ,γ ) =Mn(C \ Ωτ,γ ) = π∗
n (Oγ ).

By the definition of multiplier classes, it is clear that f , g ∈ Mn(Ω) implies f ∗ g ∈ Mn(Ω). Theorem 1.1 thus leads to 
the following description of Mn(Ω) for the domains Ω = Iγ and Ω = Oγ .

Corollary 1.2. Let γ ∈ [0, 1). Then

Mn(Iγ ) = Mn(Iγ ) = π∗
n (Iγ ) and Mn(Oγ ) = Mn(Oγ ) = π∗

n (Oγ ).
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1.2. Connection to the Schur–Szegő convolution

A circular domain in C is the image of the open or closed unit disk under a Möbius transformation. As we will show, 
Theorem 1.1 is a (surprisingly yet undiscovered) special case of the following classical result, which is a reformulation due 
to Szegő [7] of a theorem of Grace [2] regarding apolar polynomials. In the following, we will refer to it simply as Grace’s 
theorem.

Theorem 1.3 (Grace’s theorem). Let

F (z) =
n∑

k=0

Akzk and G(z) =
n∑

k=0

(
n

k

)
bkzk

be polynomials of degree n ∈N and suppose that Ω ⊂ C is a circular domain, but not the exterior of a disk, that contains all zeros of F . 
Then each zero γ of the Schur–Szegő convolution of F and G,

F ∗S G(z) :=
n∑

k=0

Akbkzk,

is of the form γ = −αβ with α ∈ Ω and G(β) = 0. If G(0) �= 0, this also holds when Ω is the exterior of a disk.

This theorem almost immediately leads to a description of the multiplier classes of all disks centered at the origin, the 
exteriors of such disks, all half-planes, and the boundaries of all those domains. In particular, it implies the following (cf. 
for instance [3, Sect. 5.5]).

Corollary 1.4. Let D be an open or closed disk centered at the origin, and H be an open or closed half-plane. Then

(i) Mn(D) = π∗
n (D) and Mn(C \ D) = π∗

n (C \D),
(ii) Mn(H) = π∗

n ([−1, 0]), if the interior of H contains the origin, and Mn(H) = π∗
n ((−∞, −1]), if the closure of H does not 

contain the origin,
(iii) Mn([−1, 0]) = π∗

n ([−1, 0]) and Mn((−∞, −1]) = π∗
n ((−∞, −1]).

To the best of our knowledge, the question of how the ‘disk statements’ (i) and the ’half-plane statements’ (ii) of Corol-
lary 1.4 are connected to each other has not been considered until now. The answer to this question is given here by 
Theorem 1.1. Note also that Corollary 1.2 gives a continuous link between the statements (i) and (iii) of Corollary 1.4, and 
that Corollary 1.2 seems to be the first result in which the multiplier classes for domains that are non-circular are deter-
mined.

In [1], Borcea and Brändén used Grace’s theorem to obtain characterizations of all linear operators on the space of 
complex polynomials that preserve the sets πn(Ω) and πn(∂Ω) for disks or half-planes Ω , and it is possible to deduce 
Theorem 1.1 from these very general results. In the following section, however, we will present a short proof of Theorem 1.1
that makes use only of Grace’s theorem.

Finally, we would like to mention that our interest in the question considered in this paper was strongly motivated by a 
recent paper [5] by Ruscheweyh and Salinas (cf. also [4,6]), in which the sets Iγ and Oγ first appeared in connection with 
the set Ωτ,γ (observe that with Ω∗

γ and Lγ as defined in [5] we have Ω∗
γ = −C \ Oγ and Lγ = −Iγ ).

2. Proofs

2.1. An auxiliary lemma

Lemma 2.1. Let τ ∈C \ {0} and γ ∈ [0, 1).

(i) Suppose G is of degree n. Then F ∗S G ∈ πn(Ωτ,γ ) for all F ∈ πn(Ωτ,γ ) if, and only if, G ∈ πn(Iγ ).
(ii) Suppose G is of degree ≤ n. Then F ∗S G ∈ πn(C \ Ωτ,γ ) for all F ∈ πn(C \ Ωτ,γ ) if, and only if, G ∈ πn(Oγ ).

Proof. We begin by proving (i) and suppose G ∈ πn(Iγ ). Then β ∈ Iγ for every zero β of G , which means:

γ |1 + β| < 1 − |β|. (3)

This holds if, and only if,

|β| < ∣∣1 + γ z(1 + β)
∣∣ for all z ∈ ∂D= {z ∈ C : |z| = 1},
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and hence, by the maximum principle (note that 1/(γ |1 + β|) > 1/(1 − |β|) > 1 by (3)), if, and only if,

ω(z) = −βz

1 + γ z(1 + β)

maps D into D. Since

−β wτ ,γ (z) = −βτ z

1 + γ z
= τω(z)

1 + γω(z)
= wτ ,γ

(
ω(z)

)
,

this shows

−β Ωτ,γ = −β wτ ,γ (D) ⊆ wτ ,γ (D) = Ωτ,γ

for every zero β of G . This implies F ∗S G ∈ πn(Ωτ,γ ) by Grace’s theorem.
Our argumentation also shows that if G of degree n has a zero β /∈ Iγ , then there is an α ∈ Ωτ,γ such that −αβ /∈ Ωτ,γ . 

For such an α, the polynomial

F (z) := (1 − z/α)n =
n∑

k=0

(
n

k

)
(−α)−kzk

is of degree n with all zeros in Ωτ,γ and we have:

(F ∗S G)(z) = G(−z/α).

Hence, in this case F ∗S G has a zero at −αβ that is not in Ωτ,γ . The proof of (i) is thus complete.
In order to prove (ii), recall that if F (z) = ∑m

k=0 Akzk is a polynomial of degree m ≤ n with F (0) �= 0, then the n-inverse

F ∗n(z) := zn F
(
z−1

) =
n∑

k=n−m

An−kzk

of F is of degree n, and the zeros of F ∗n are those of F reflected around the unit circle. In particular, we have that

F 
→ F ∗n is a bijection between πn(C \ Ωτ,γ ) and πn(Ω(γ 2−1)/τ ,γ ).

Hence, G of degree ≤ n is such that F ∗S G ∈ πn(C \ Ωτ,γ ) for all F ∈ πn(C \ Ωτ,γ ), if, and only if,

R ∗S G∗n = (F ∗S G)∗n ∈ πn(Ω(γ 2−1)/τ ,γ )

for all F ∗n =: R ∈ πn(Ω(γ 2−1)/τ ,γ ). Because of (i), this is equivalent to G∗n ∈ πn(Iγ ). Since G∗n 
→ G is a bijection between 
πn(Iγ ) and πn(Oγ ), we have verified (ii). �
2.2. Proof of Theorem 1.1

Every polynomial in πn(Iγ ) or πn(Oγ ) can be approximated by polynomials in πn(Iγ ) or πn(Oγ ), respectively. The 
relations Mn(Ωτ,γ ) ⊇ π∗

n (Iγ ) and Mn(C \ Ωτ,γ ) ⊇ π∗
n (Oγ ) thus follow directly from Lemma 2.1. On the other hand, if g

of degree n is such that F ∗ g ∈ πn(Ωτ,γ ) for all F ∈ πn(Ωτ,γ ), then (F ∗ g)(xz) = F (z) ∗ g(xz) ∈ πn(Ωτ,γ ) for all x > 1. By 
Lemma 2.1, this implies g(xz) ∈ π∗

n (Iγ ) for all x > 1, and thus g ∈ π∗
n (Iγ ). This shows that Mn(Ωτ,γ ) ⊆ π∗

n (Iγ ), and hence 
that Mn(Ωτ,γ ) = π∗

n (Iγ ).
In a similar way, we can prove that Mn(C \ Ωτ,γ ) = π∗

n (Oγ ). We will omit the proofs of the remaining two relations 
Mn(Ωτ,γ ) = π∗

n (Iγ ) and Mn(C \ Ωτ,γ ) = π∗
n (Oγ ), since they are very similar to the proofs of the two relations we have 

just shown. We have thus verified Theorem 1.1.

2.3. Proof of Corollary 1.2

If F ∈ πn(Iγ ) and G ∈ πn(Iγ ), then by Lemma 2.1(i) we have H ∗S G ∈ πn(Ωτ,γ ) for all H ∈ πn(Ωτ,γ ), and consequently, 
by Theorem 1.1(i), H ∗S G ∗S F ∈ πn(Ωτ,γ ) for all such H . Another application of Lemma 2.1(i) shows that F ∗S G ∈ πn(Iγ ). 
On the other hand, if G of degree n is such that F ∗S G ∈ πn(Iγ ) for all F ∈ πn(Iγ ), then in particular

G(z) = (1 + z)n ∗S G(z) ∈ πn(Iγ ),

since −1 ∈ Iγ . This proves that for a polynomial G of degree n we have F ∗S G ∈ πn(Iγ ) for all F ∈ πn(Iγ ) if, and only 
if, G ∈ πn(Iγ ). In a similar way, one can show that for a polynomial G of degree ≤ n, we have F ∗S G ∈ πn(Oγ ) for all 
F ∈ πn(Oγ ) if, and only if, G ∈ πn(Oγ ). Corollary 1.2 now follows from these two relations in the same way as Theorem 1.1
follows from Lemma 2.1.
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