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r é s u m é

Nous obtenons des estimations finales pour les constantes de l’échantillonnage dans les 
espaces de Bernstein lorsque la densité des échantillons est proche de la valeur critique.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Given a number σ > 0, the Bernstein space Bσ is defined to be the set of all entire functions f satisfying for all real x
and y the inequality | f (x + iy)| ≤ C exp(σ |y|) with some C = C( f ).

A set Λ ⊂ R is called uniformly discrete (u.d.) if

inf
λ,λ′∈Λ,λ �=λ′

∣∣λ − λ′∣∣ > 0.

One says that Λ is a (stable) sampling set for Bσ if there exists K such that

‖ f ‖ := sup
t∈R

∣∣ f (t)
∣∣ ≤ K sup

λ∈Λ

∣∣ f (λ)
∣∣ ( f ∈ Bσ ).

The minimal constant K for which this holds is called the sampling constant K (Λ, Bσ ).
The classical Beurling theorem [2] characterizes sampling sets for Bσ in terms of the lower uniform density

D−(Λ) := lim
l→∞

min
a∈R

#Λ ∩ (a,a + l)

l
.

Without loss of generality, one may consider the case σ = π . Then Beurling’s theorem states:
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Λ is a sampling set for Bπ if and only if D−(Λ) > 1.

The most delicate point in Beurling’s proof (see [2]) is to show that no sampling set Λ may have the critical density 
D−(Λ) = 1.

If D−(Λ) = 1, one can show that constant K (Λ, Bσ ) grows to infinity when σ approaches 1 from below. When Λ = Z, 
S.N. Bernstein [1] proved that the growth is precisely logarithmic:

K (Z, Bσ ) = 2

π
log

π

π − σ

(
1 + o(1)

)
(σ ↑ π).

A slightly weaker result was proved in [3]. See also [6] where some estimates for K (Λ, Bσ ) are obtained. We mention 
also [4], where the Gabor frame considered for the Gaussian window, which corresponds to the lattice aZ × aZ, and the 
asymptotics of the frames constants are obtained near the critical value a = 1.

2. Results

2.1. Sampling in Bernstein spaces

We are interested in the asymptotic behavior of the sampling constant K (Λ, Bσ ) for irregular sampling Λ near the 
critical value of density. Our main result shows that K (Λ, Bσ ) must have at least logarithmic growth.

We will denote by C different absolute positive constants.

Theorem 1. Let Λ be a u.d. set with D−(Λ) = 1. Then

K (Λ, Bσ ) ≥ C log
π

π − σ
(0 < σ < π). (1)

The proof is based on a reduction of the sampling problem to a similar one for the algebraic polynomials. This approach 
provides a new proof for the critical case in Beurling’s theorem above.

It should be mentioned that removing even a single point from Λ may result in a much faster growth of the sampling 
constants. For example, it is straightforward to check that

K
(
Z \ {0}, Bσ

) ≥ σ

π − σ
(0 < σ < π).

In fact, the constant K (Λ, Bσ ) may have arbitrarily fast growth:

Theorem 2. For every function ω(σ ) ↑ ∞ (σ ↑ π ) there exists a u.d. set Λ, D−(Λ) = 1, such that

K (Λ, Bσ ) ≥ ω(σ ) (σ < π).

2.2. Sampling in Pn

Denote by Pn the space of all algebraic polynomials of degree ≤n on the unit circle T := {z ∈ C : |z| = 1}.
Given a finite set Λ ⊂ T, #Λ > n, one may introduce the corresponding sampling constant

K (Λ, Pn) := sup
P∈Pn,P �=0

maxz∈T |P (z)|
maxλ∈Λ |P (λ)| .

Theorem 3. For every Λ ⊂ T, #Λ > n, the estimate holds:

K (Λ, Pn) ≥ C log
n

#Λ − n
. (2)

3. Sampling in spaces of polynomials

The following result essentially goes back to Faber:

Let U be a projector from the space C(T) onto the subspace Pn . Then ‖U‖ > C log n,

see [5], ch. 7.
Faber’s approach is based on averaging over translations. Different versions of the result have been obtained by this 

approach. We will use the following one due to Al.A. Privalov [8] (see also [7]):

For every projector U above and every family of linear functionals ψ j (1 ≤ j ≤ m) in C(T), there is a unit vector f in C(T) such 
that ‖U f ‖ > C log n/m, and the functionals vanish on f .
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Proof of Theorem 3. Let n and m be positive integers. Given any l := (n + 1) + m points ξ j ∈ T (0 ≤ j ≤ l), for any f ∈ C(T)

denote by P ( f ) the polynomial of degree n satisfying

P ( f )(ξ j) = f (ξ j) (0 ≤ j ≤ n).

Clearly, P ( f ) is uniquely defined, and the operator U : f → P ( f ) is a projector from C(T) onto Pn .
Set

ψ j( f ) := P ( f )(ξn+ j) (1 ≤ j ≤ m).

Now we apply Privalov’s theorem. We get a function f satisfying

‖ f ‖ = 1, P ( f )(ξ j) = 0 (n + 1 ≤ j ≤ l),
∥∥P ( f )

∥∥ > C log
n

m
.

Then (2) follows. �
4. Sampling in Bσ

We will sketch the proofs of Theorems 1 and 2. More details can be found in our preprint [7].
Let N be a positive integer and Λ ⊂ [−N, N]. Set

ΛN := Λ ∪ (−∞,−N] ∪ [N,∞).

By Beurling’s theorem, ΛN is a sampling set for Bπ . We show that for large N , the sampling constant K (ΛN , Bπ ) must be 
large unless the number of points of Λ in (−N, N) is “much larger than” 2N:

Proposition 1. For every Λ ⊂ [−N, N], #Λ > 2N, we have:

K (ΛN , Bπ ) ≥ C log
2N

#Λ − 2N
. (3)

The proof consists of several steps.
1. First notice that by a simple change of variable in Theorem 3, one obtains:

Corollary 1. Given ν ∈N and a set Γ ⊂ [−ν, ν], #Γ > 2ν , there is an exponential polynomial

P (t) =
∑
|k|≤ν

ckeiπkt/ν ∈ Bπ , (4)

such that maxγ ∈Γ |P (γ )| ≤ 1 and

max|t|≤ν

∣∣P (t)
∣∣ ≥ C log

2ν

#Γ − 2ν
. (5)

2. We may assume that N is a large number. It is easy to see that it suffices to prove (3) for the case:

2N + N2/3 ≤ #Λ ≤
(

2 + 1

100

)
N. (6)

Using appropriate re-scaling, one can see that under condition (6), inequality (3) follows from the inequality:

K (ΛN , Bπ/(1−δ)) ≥ C log
2N

#Λ − 2N
, (7)

where 0 < δ < N−1/3.
3. To prove (7), we fix a number ν , N − 2

√
N < ν < N − √

N . Set

Γ := (Λ + 2νZ) ∩ [−ν,ν].
Without loss of generality, we may assume that #Γ = #Λ. Then, by Corollary 1, there is an exponential polynomial P

satisfying (4), (5) and |P (t)| ≤ 1 on Γ , which implies |P (t)| ≤ 1 on Λ.
Denote by t0 a maximum modulus point of P that lies on [−ν, ν]. We may assume that P (t0) satisfies:

∣∣P (t0)
∣∣ = C log

2ν

#Γ − 2ν
, (8)

where C is the constant in (5).
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4. Set

h(t) := sinπt

πt
, g(t) := P (t)h

(
ν−1/3(t − t0)

)
.

Define δ by 1 + ν−1/3 = 1/(1 − δ). So, δ < N−1/3, as required. Then

g ∈ Bπ(1+ν−1/3) = Bπ/(1−δ).

We see that |g(t)| ≤ 1 on Λ. The distance from t0 to the points ±N is at least 
√

N , so by (8), for all t ≥ N we get:
∣∣g(t)

∣∣ ≤ ∣∣P (t0)
∣∣∣∣h(

ν−1/3(t − t0)
)∣∣ ≤ 1.

This gives (7). Proposition 1 is proved.
It is not difficult to deduce Theorem 1 from Proposition 1.
Theorem 2 is also an easy consequence of Proposition 1. Indeed, fix any function ω(σ ) ↑ ∞ (σ ↑ π ) and any sequence 

σ j > 0 (σ j ↑ π ). Then it suffices to find a u.d. set Λ, D−(Λ) = 1, such that K (Λ, Bσ j ) > ω(σ j+1), j ∈ N. One may obtain 
such a set Λ as an infinite union of finite arithmetic progressions with differences π/σ j , j ∈ N. By Proposition 1, Λ will 
satisfy the property above provided these progressions are sufficiently long.
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