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We show that the results of Foulon [5,6] and Kim [7] (independently, of Deng and Hou 
[4]) about the nonexistence of locally symmetric Finsler metrics of positive or negative flag 
curvature are in fact local.
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r é s u m é

Nous montrons que les résultats de Foulon [5,6] et de Kim [7] (et indépendamment, de 
Deng et Hou [4]) sur l’inexistence de métriques de Finsler localement symétriques, de 
courbure de drapeau positive ou négative, sont en fait locaux.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Finsler metric on a smooth manifold M is a continuous function F : T M → [0, ∞) such that for every point p ∈ M the 
restriction F p = F |T p M on the tangent space at p is a Minkowski norm, that is F p is positively homogeneous and convex 
and it vanishes only at y = 0:

(a) F p(λ · y) = λ · F p(y) for any λ ≥ 0.
(b) F p(y + ỹ) ≤ F p(y) + F p( ỹ).
(c) F p(y) = 0 ⇒ y = 0.

We will also assume that our Finsler metric is of class C2, that is the restriction of F to the slit tangent bundle T M0 =
T M \ (the zero section) is a function of class C2, and that it is strongly convex, that is the Hessian of the restriction of 1

2 F 2

to T p M \ {0} (which will be denoted by g = gij later) is positively definite for any p ∈ M and any nonzero vector y ∈ T p M .
The Finsler manifold (M, F ) is called locally symmetric if, for every point p ∈ M , there exists r = r(p) > 0 and an isometry 

I p : Br(p) → Br(p) (called the reflection at p) such that I p(p) = p and dp(I p) = −id : T p M → T p M . Here Br(p) denotes the 
ball of radius r around p.
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Our main result is:

Theorem 1. Suppose the flag curvature of a locally symmetric Finsler metric is negative or positive. Then, the metric is actually a 
Riemannian metric, that is, there exists a Riemannian metric h such that for all p ∈ M, y ∈ T p M we have F p(y) = √

hp(y, y).

Note that there exist examples of locally (and even globally) symmetric Finsler metrics such that the flag curvature 
changes the sign, or is nonpositive, or is nonnegative. Actually, the (reversible) Minkowski space is already an example of 
globally symmetric Finsler space of nonpositive and of nonnegative flag curvature, since its flag curvature is zero. One can 
also take the direct product of a Minkowski space with the round sphere and/or with the hyperbolic space constructing ex-
amples such that the flag curvature is nonpositive and is negative somewhere, or such that the flag curvature is nonnegative 
and is positive somewhere, or such that it changes the sign. The holonomy group of all these examples is reducible, but one 
can also construct irreducible examples by perturbing a locally symmetric Riemannian metric of rank ≥2 by an arbitrary 
(smooth, small and homogeneous of degree 1) function of the Chevalley’s polynomials. Since the Chevalley’s polynomials 
are preserved by any isometry of the initial Riemannian metric (see, e.g., [9,3]), the obtained Finsler metric is still locally 
symmetric.

Special cases of Theorem 1 are the following two statements, which were known before in the “global” setting; the 
initial proof of these statements is also “global”, i.e., it requires the assumption that the manifold M is compact, and is very 
different from our proof, which is local.

Special Case. (Corollary 1 of Foulon [6]; also follows from theorem (A) of Foulon [5].) Let (M, F ) be a Finsler locally symmetric space 
of negative flag curvature. If M is compact, then F is actually a Riemannian metric.

Special Case. (Independently Deng and Hou [4] and Kim [7].) Let (M, F ) be a Finsler locally symmetric space of positive flag curvature. 
If M is compact, then F is actually a Riemannian metric.

Remark. Actually, Foulon in [5] has a less restrictive definition of locally symmetric spaces (locally symmetric spaces in the 
our definition are also locally symmetric in the definition of [5] but not vice versa), so his result is in fact stronger and we 
cannot repeat it by our methods or prove its local version.

Proof of Theorem 1. Our proof of Theorem 1 is based on the following recent result:

Fact. ([8], Remark (A) in Section 8 + Theorem 9.2.) Let (M, F ) be a C2-smooth Finsler manifold. If (M, F ) is locally symmetric, then 
F is Berwald. Moreover, the associated connection is the Levi–Civita connection of a locally symmetric Riemannian metric. (We denote 
this Riemannian metric by h, in paper [8] it is called the Binet–Legendre metric associated with the Finsler metric.)

Recall that a Finsler manifold is Berwald, if there exists a torsion free linear connection ∇ called associated connection
such that the parallel transport preserves the Finsler metric.

It is well known (see for example [1,2]) that the flag curvature K p(y, V ) for the Berwald metrics can be calculated by the 
following procedure. Compute the curvature tensor R j

ik�
of the associated connection; for every p we view the curvature 

tensor as the mapping

R : T p M × T p M × T p M → T p M, R(a,b)c = ci R j
ik�

akb�. (1)

Then, for every two linearly independent vectors yi, V i ∈ T p M we have:

K p(y, V ) = g y(V , R(V , y)y)

g y(y, y)g y(V , V ) − g y(V , y)2
. (2)

Here g y is the second differential of the restriction of the function 1
2 F 2 to T p M; g y = gij is a (0, 2)-tensor whose compo-

nents depend on the point p in M and on the tangent vector y ∈ T p M .
Let us now consider the Riemannian metric h whose existence we recalled in fact above: it is locally symmetric and its 

Levi–Civita connection is the associated connection of F . Let us now show that if the flag curvature of F is positive (for all 
linearly independent y and V ∈ T p M) then the sectional curvature of h is also positive, and if the flag curvature of F is 
negative, then the sectional curvature of h is also negative.

In order to do this, for each vector y ∈ TxM , let us consider the endomorphism:

A y : T p M → T p M, V 	→ R(V , y)y.

In the tensor notation, (A y)
j
k = R j

ik�
yi y� . Since the bilinear form (ξ, ν) 	→ h(ξ, R(ν, y)y) is symmetric with respect to ξ

and ν because of the symmetries of the curvature tensor, for each y the endomorphism A y is diagonalizable. Clearly, y is 
an eigenvector of A y with eigenvalue 0. Comparing the formula for A y with (2), we see that the flag curvature is given by
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K p(y, V ) = g y(V , A y(V ))

g y(y, y)g y(V , V ) − g y(V , y)2
.

If K p(y, V ) is positive for all linearly independent y and V , then for each y 
= 0, all eigenvalues of A y except of the 
eigenvalue 0 corresponding to the eigenvector y are positive, otherwise the pair (y, V ), where V is an eigenvector with 
nonpositive eigenvalue has K p(y, V ) ≤ 0. Then, the sectional curvature of h (which is given by h(V ,A y(V ))

h(y,y)h(V ,V )−h(V ,y)2 ) is also 
positive for all linearly independent y and V as we claim.

The case when K p(y, V ) is negative for all linearly independent y and V is virtually the same—one needs to replace 
“positive” by “negative” in the previous arguments.

Finally, if the flag curvature is positive, or if it is negative, the sectional curvature of h is positive resp. negative, i.e., is 
never equal to zero. But then the holonomy group of h is transitive by [10, Theorem 9]. Since both the Finsler function F

and the metric h are preserved by the holonomy group, the function F p(y)2

hp(y,y)
does not depend on y, so the metric F is a 

Riemannian metric as we claimed. Theorem 1 is proved.
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