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We show that on almost complex surfaces plurisubharmonic functions can be locally 
approximated by smooth plurisubharmonic functions. The main tool is the Poletsky type 
theorem due to U. Kuzman.
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r é s u m é

Nous montrons que, sur une surface presque complexe, les fonctions pluri-sous-harmo-
niques peuvent étre localement approximées par des fonctions pluri-sous-harmoniques 
lisses. La méthode consiste à appliquer le théorème de type Polestsky démontré par U. 
Kuzman.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let (M, J ) be an almost complex manifold. In his paper [3], Haggui defines plurisubharmonic functions on M as upper 
semicontinuous functions that are subharmonic on every J -holomorphic disk. Recently Harvey and Lawson proved that a 
locally integrable function u is plurisubharmonic iff a current i∂∂̄u is positive (see [4]).

It is a very natural open question in this theory whether any plurisubharmonic function is (locally) a limit of a decreasing 
sequence of smooth plurisubharmonic functions. The Richberg-type theorem was proved in [8]. This gives a positive answer 
in a case of continuous functions. In this note, we prove it for all plurisubharmonic functions in the (complex) dimension2 2.

Theorem 1. Let dim M = 2 and P ∈ M. Then there is a domain D, which is a neighborhood of P , such that for every u ∈PSH(D)

there exists a decreasing sequence ψk ∈ C∞ ∩PSH(D) such that ψk → u.

As an immediate consequence of Theorem 1 and Proposition 5.2 from [8], we obtain the following:

Corollary 2. Let dim M = 2 and u, v in W 1,2
loc ∩PSH(M). Then a current i∂∂̄u ∧ i∂∂̄v defined in [8] is a (positive) measure.
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1 The author was partially supported by the NCN grant 2011/01/D/ST1/04192.
2 In this note by the dimension of an almost complex manifold we mean the complex dimension which is a half of the real dimension.
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In particular the Monge–Ampère operator (i∂∂̄u)2 is well defined for any bounded plurisubharonic function u on an 
almost complex surface (compare to Proposition 4.2 in [8]). On domains in C2 it was proved by Błocki (see [1]) that a set 
W 1,2

loc ∩PSH is a natural domain for the Monge–Ampère operator.
The main step in the proof of Theorem 1 is the continuity of largest plurisubharmonic minorants of certain continuous 

functions. Harvey and Lawson, after viewing a preliminary version of this paper, informed the author that using viscosity 
methods it is possible to prove it in any dimension. It will be explained in [5].

2. Proof

2.1. J -holomorphic discs

A good reference for the (local) theory of J -holomorphic discs is [6]. In this subsection, J is C1 close to Jst (in particular 
( J + Jst) is invertible), where Jst is the standard (integrable) almost complex structure in Cn . Let D be a unit disc in C. 
A function u : D → (Cn, J ) is J -holomorphic if and only if

∂u

∂ z̄
+ Q (u)

∂u

∂z
= 0

when

Q = ( J + Jst)
−1( J − Jst).

Let 0 < α < 1 and T : C0,α(D̄, Cn) → C1,α(D̄, Cn) be the Cauchy–Green operator given by:

T u = 1

π

∫
D

u(ζ )

· − ζ
dζ.

Recall that ∂̄(T u) = u for u ∈ C0,α(D̄, Cn). Set

Φu = u + T

(
Q (u)

∂u

∂z

)

and

Ψ u = Φu + (u − Φu)(0).

By the definition Ψ u(0) = u(0). Note that u ∈ C1,α(D̄, Cn) is J -holomorphic in D iff Ψ u is Jst-holomorphic. Because dΨ

is close to Id, the map Ψ : C1,α(D̄, Cn) → C1,α(D̄, Cn) is a local diffeomorphism and there is a constant C0 such that 
‖(dΨ )−1‖ ≤ C0 everywhere.

We will use the following lemma.

Lemma 3. Let V ∈C
n. For any u ∈ C1,α(D̄, Cn), there is v ∈ C1,α(D̄, Cn) such that Ψ v = Ψ u + V and ‖u − v‖C1,α ≤ C0|V |.

Proof. Set Ut = Ψ u + tV and

S = {
t ∈ [0,1] : ∃w ∈ C1,α

(
D̄,Cn) s. t. Ψ w = Ut, ‖u − w‖C1,α ≤ tC0|V |}.

S is nonempty, by the inverse function theorem it is open, by the Arzelà–Ascoli theorem it is closed and hence S = [0, 1].

2.2. Disc envelope

Let p ∈ Ω ⊂ M and let Op(D̄, Ω) be a set of J -holomorphic discs λ : D̄→ Ω with λ(0) = p. For an upper semicontinuous 
function f : Ω →R, we consider the following disc envelope:

PΩ f (p) = inf
λ∈Op(D̄,Ω)

1

2π

2π∫
0

f ◦ λ
(
eit)dt.

We need the following lemma.

Lemma 4. Let Ω1 �Ω2 ⊂ C
n and let J be an almost complex structure on Ω2 , which is C1 close to Jst . Let f ∈ C(Ω2) be such that

PΩ1 f = (PΩ2 f )|Ω1 .

Then PΩ1 f ∈ C(Ω1).
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Proof. By shrinking Ω2, we can assume that f is uniformly continuous on Ω2 with a modulus of continuity ω and J is C1

close to Jst on Cn . Set any 0 < δ < C−1
0 dist(∂Ω1, ∂Ω2). Let ε > 0, and p, q ∈ Ω1 with |p − q| ≤ δ. There is λ ∈ Op(D̄, Ω1)

such that:

PΩ1 f (p) ≥ 1

2π

2π∫
0

f ◦ λ
(
eit)dt − ε.

By Lemma 3, there is a function μ ∈ C1,α(D̄, Cn) such that:

Ψ (μ) = Ψ (λ) + p − q

and

‖λ − μ‖L∞ ≤ C0|p − q|.
Since functions (z → μ(rz)) are in Oq(D̄, Ω2) for 1 > r > 0, we can estimate:

PΩ1 f (q) = PΩ2 f (q) ≤ 1

2π

2π∫
0

f ◦ μ
(
eit)dt ≤ 1

2π

2π∫
0

(
f ◦ λ

(
eit) + ω(C0δ)

)
dt ≤ PΩ1 f (p) + ω(C0δ) + ε.

Letting ε to 0, we can conclude that PΩ1 f is uniformly continuous, with a modulus of continuity ω̃(x) = ω(C0x).

2.3. Kuzman–Poletsky theorem

For a domain Ω ⊂ M = C
n and an upper semicontinuous function f , Poletsky (see [9]) proved that PΩ f is a plurisub-

harmonic function (moreover it is the largest plurisubharmonic minorant of f ). The key tool in the proof of Theorem 1 is a 
result of Kuzman, who showed the same for any 2-dimensional almost complex manifold (see Theorem 1 in [7]). The only 
reason for the assumption about a dimension in our theorem is just this assumption in Kuzman’s theorem.

Proof of Theorem 1. The theorem is local, hence we can assume that P ∈ C
2 and J is C1 close to Jst. We can choose a 

neighborhood D of P such that there exists a positive continuous strictly J -plurisubharmonic3 exhaustion function ρ on D .4

Set u ∈ PSH(D). Let us take a decreasing sequence of continuous functions φk tending to u. We can modify ρ such that 
limz→∂ D(ρ−φ1) = +∞ and put φ̃k = max{φk, ρ−k}. There are domains Dk � D such that φ̃k = ρ−k on some neighborhood 
Uk of D \ Dk . By Kuzman’s result φ̂k = P D φ̃k, P Dk φ̃k are J -plurisubharmonic. Note that φ̂k = ρ − k on Uk and P Dk φ̃k = ρ − k

on Dk ∩ Uk , hence by Lemma 4 φ̂k ∈ C(D). Thus we get a decreasing sequence of continuous J -plurisubharmonic functions 
φ̂k tending to u.

By the Richberg theorem (see Theorem 3.1 in [8]), there are functions ψk ∈ C∞ ∩PSH(D) such that

φ̂k + 2−k−1ρ ≤ ψk ≤ φ̂k + 2−kρ

and we can see that a sequence ψk decreases to u.
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