

Contents lists available at ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

CrossMark

Complex analysis

On the regularization of *J*-plurisubharmonic functions

Sur la régularisation des fonctions J-pluri-sous-harmoniques

Szymon Pliś¹

Institute of Mathematics, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland

ARTICLE INFO

Article history: Received 26 September 2014 Accepted 3 November 2014 Available online 20 November 2014

Presented by Jean-Pierre Demailly

ABSTRACT

We show that on almost complex surfaces plurisubharmonic functions can be locally approximated by smooth plurisubharmonic functions. The main tool is the Poletsky type theorem due to U. Kuzman.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

RÉSUMÉ

Nous montrons que, sur une surface presque complexe, les fonctions pluri-sous-harmoniques peuvent étre localement approximées par des fonctions pluri-sous-harmoniques lisses. La méthode consiste à appliquer le théorème de type Polestsky démontré par U. Kuzman.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let (M, J) be an almost complex manifold. In his paper [3], Haggui defines plurisubharmonic functions on M as upper semicontinuous functions that are subharmonic on every J-holomorphic disk. Recently Harvey and Lawson proved that a locally integrable function u is plurisubharmonic iff a current $i\partial \bar{\partial} u$ is positive (see [4]).

It is a very natural open question in this theory whether any plurisubharmonic function is (locally) a limit of a decreasing sequence of smooth plurisubharmonic functions. The Richberg-type theorem was proved in [8]. This gives a positive answer in a case of continuous functions. In this note, we prove it for all plurisubharmonic functions in the (complex) dimension² 2.

Theorem 1. Let dim M = 2 and $P \in M$. Then there is a domain D, which is a neighborhood of P, such that for every $u \in \mathcal{PSH}(D)$ there exists a decreasing sequence $\psi_k \in C^{\infty} \cap \mathcal{PSH}(D)$ such that $\psi_k \to u$.

As an immediate consequence of Theorem 1 and Proposition 5.2 from [8], we obtain the following:

Corollary 2. Let dim M = 2 and u, v in $W_{loc}^{1,2} \cap \mathcal{PSH}(M)$. Then a current $i\partial \bar{\partial} u \wedge i\partial \bar{\partial} v$ defined in [8] is a (positive) measure.

http://dx.doi.org/10.1016/j.crma.2014.11.001

E-mail address: splis@pk.edu.pl.

¹ The author was partially supported by the NCN grant 2011/01/D/ST1/04192.

 $^{^2}$ In this note by the dimension of an almost complex manifold we mean the complex dimension which is a half of the real dimension.

¹⁶³¹⁻⁰⁷³X/© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

In particular the Monge-Ampère operator $(i\partial \bar{\partial} u)^2$ is well defined for any bounded plurisubharonic function u on an almost complex surface (compare to Proposition 4.2 in [8]). On domains in \mathbb{C}^2 it was proved by Błocki (see [1]) that a set $W_{loc}^{1,2} \cap \mathcal{PSH}$ is a natural domain for the Monge-Ampère operator. The main step in the proof of Theorem 1 is the continuity of largest plurisubharmonic minorants of certain continuous

The main step in the proof of Theorem 1 is the continuity of largest plurisubharmonic minorants of certain continuous functions. Harvey and Lawson, after viewing a preliminary version of this paper, informed the author that using viscosity methods it is possible to prove it in any dimension. It will be explained in [5].

2. Proof

2.1. J-holomorphic discs

A good reference for the (local) theory of *J*-holomorphic discs is [6]. In this subsection, *J* is C^1 close to J_{st} (in particular $(J + J_{st})$ is invertible), where J_{st} is the standard (integrable) almost complex structure in \mathbb{C}^n . Let \mathbb{D} be a unit disc in \mathbb{C} . A function $u : \mathbb{D} \to (\mathbb{C}^n, J)$ is *J*-holomorphic if and only if

$$\frac{\partial u}{\partial \bar{z}} + Q(u)\frac{\partial u}{\partial z} = 0$$

when

$$Q = (J + J_{st})^{-1}(J - J)$$

Let $0 < \alpha < 1$ and $T : \mathcal{C}^{0,\alpha}(\overline{\mathbb{D}}, \mathbb{C}^n) \to \mathcal{C}^{1,\alpha}(\overline{\mathbb{D}}, \mathbb{C}^n)$ be the Cauchy–Green operator given by:

$$Tu = \frac{1}{\pi} \int_{\mathbb{D}} \frac{u(\zeta)}{\cdot - \zeta} \mathrm{d}\zeta.$$

Recall that $\bar{\partial}(Tu) = u$ for $u \in \mathcal{C}^{0,\alpha}(\bar{\mathbb{D}}, \mathbb{C}^n)$. Set

st).

$$\Phi u = u + T\left(Q\left(u\right)\frac{\partial u}{\partial z}\right)$$

and

$$\Psi u = \Phi u + (u - \Phi u)(0).$$

By the definition $\Psi u(0) = u(0)$. Note that $u \in C^{1,\alpha}(\overline{\mathbb{D}}, \mathbb{C}^n)$ is *J*-holomorphic in \mathbb{D} iff Ψu is J_{st} -holomorphic. Because $d\Psi$ is close to *Id*, the map $\Psi : C^{1,\alpha}(\overline{\mathbb{D}}, \mathbb{C}^n) \to C^{1,\alpha}(\overline{\mathbb{D}}, \mathbb{C}^n)$ is a local diffeomorphism and there is a constant C_0 such that $\|(d\Psi)^{-1}\| \le C_0$ everywhere.

We will use the following lemma.

Lemma 3. Let $V \in \mathbb{C}^n$. For any $u \in \mathcal{C}^{1,\alpha}(\overline{\mathbb{D}}, \mathbb{C}^n)$, there is $v \in \mathcal{C}^{1,\alpha}(\overline{\mathbb{D}}, \mathbb{C}^n)$ such that $\Psi v = \Psi u + V$ and $||u - v||_{\mathcal{C}^{1,\alpha}} \leq C_0|V|$.

Proof. Set $U_t = \Psi u + tV$ and

$$S = \{ t \in [0, 1] : \exists w \in \mathcal{C}^{1, \alpha} (\bar{\mathbb{D}}, \mathbb{C}^n) \text{ s. t. } \Psi w = U_t, \|u - w\|_{\mathcal{C}^{1, \alpha}} \le t C_0 |V| \}.$$

S is nonempty, by the inverse function theorem it is open, by the Arzelà-Ascoli theorem it is closed and hence S = [0, 1].

2.2. Disc envelope

Let $p \in \Omega \subset M$ and let $\mathcal{O}_p(\overline{\mathbb{D}}, \Omega)$ be a set of *J*-holomorphic discs $\lambda : \overline{\mathbb{D}} \to \Omega$ with $\lambda(0) = p$. For an upper semicontinuous function $f : \Omega \to \mathbb{R}$, we consider the following disc envelope:

$$P_{\Omega}f(p) = \inf_{\lambda \in \mathcal{O}_p(\bar{\mathbb{D}},\Omega)} \frac{1}{2\pi} \int_0^{2\pi} f \circ \lambda(e^{it}) dt.$$

We need the following lemma.

Lemma 4. Let $\Omega_1 \in \Omega_2 \subset \mathbb{C}^n$ and let J be an almost complex structure on Ω_2 , which is \mathcal{C}^1 close to J_{st} . Let $f \in \mathcal{C}(\Omega_2)$ be such that

$$P_{\Omega_1} f = (P_{\Omega_2} f)|_{\Omega_1}.$$

Then $P_{\Omega_1} f \in C(\Omega_1)$.

Proof. By shrinking Ω_2 , we can assume that f is uniformly continuous on Ω_2 with a modulus of continuity ω and J is C^1 close to J_{st} on \mathbb{C}^n . Set any $0 < \delta < C_0^{-1} \operatorname{dist}(\partial \Omega_1, \partial \Omega_2)$. Let $\varepsilon > 0$, and $p, q \in \Omega_1$ with $|p - q| \le \delta$. There is $\lambda \in \mathcal{O}_p(\bar{\mathbb{D}}, \Omega_1)$ such that:

$$P_{\Omega_1}f(p) \geq \frac{1}{2\pi} \int_0^{2\pi} f \circ \lambda(e^{it}) dt - \varepsilon.$$

By Lemma 3, there is a function $\mu \in C^{1,\alpha}(\overline{\mathbb{D}}, \mathbb{C}^n)$ such that:

$$\Psi(\mu) = \Psi(\lambda) + p - q$$

and

 $\|\lambda - \mu\|_{L^{\infty}} \leq C_0 |p - q|.$

Since functions $(z \mapsto \mu(rz))$ are in $\mathcal{O}_q(\bar{\mathbb{D}}, \Omega_2)$ for 1 > r > 0, we can estimate:

$$P_{\Omega_1}f(q) = P_{\Omega_2}f(q) \le \frac{1}{2\pi} \int_0^{2\pi} f \circ \mu\left(e^{it}\right) dt \le \frac{1}{2\pi} \int_0^{2\pi} \left(f \circ \lambda\left(e^{it}\right) + \omega(C_0\delta)\right) dt \le P_{\Omega_1}f(p) + \omega(C_0\delta) + \varepsilon$$

Letting ε to 0, we can conclude that $P_{\Omega_1}f$ is uniformly continuous, with a modulus of continuity $\tilde{\omega}(x) = \omega(C_0 x)$.

2.3. Kuzman-Poletsky theorem

For a domain $\Omega \subset M = \mathbb{C}^n$ and an upper semicontinuous function f, Poletsky (see [9]) proved that $P_\Omega f$ is a plurisubharmonic function (moreover it is the largest plurisubharmonic minorant of f). The key tool in the proof of Theorem 1 is a result of Kuzman, who showed the same for any 2-dimensional almost complex manifold (see Theorem 1 in [7]). The only reason for the assumption about a dimension in our theorem is just this assumption in Kuzman's theorem.

Proof of Theorem 1. The theorem is local, hence we can assume that $P \in \mathbb{C}^2$ and J is C^1 close to J_{st} . We can choose a neighborhood D of P such that there exists a positive continuous strictly J-plurisubharmonic³ exhaustion function ρ on D.⁴ Set $u \in \mathcal{PSH}(D)$. Let us take a decreasing sequence of continuous functions ϕ_k tending to u. We can modify ρ such that $\lim_{z\to\partial D}(\rho-\phi_1) = +\infty$ and put $\tilde{\phi}_k = \max\{\phi_k, \rho-k\}$. There are domains $D_k \in D$ such that $\tilde{\phi}_k = \rho - k$ on some neighborhood U_k of $D \setminus D_k$. By Kuzman's result $\hat{\phi}_k = P_D \tilde{\phi}_k$, $P_{D_k} \tilde{\phi}_k$ are J-plurisubharmonic. Note that $\hat{\phi}_k = \rho - k$ on U_k and $P_{D_k} \tilde{\phi}_k = \rho - k$ on $D_k \cap U_k$, hence by Lemma 4 $\hat{\phi}_k \in C(D)$. Thus we get a decreasing sequence of continuous J-plurisubharmonic functions $\hat{\phi}_k$ tending to u.

By the Richberg theorem (see Theorem 3.1 in [8]), there are functions $\psi_k \in \mathcal{C}^{\infty} \cap \mathcal{PSH}(D)$ such that

$$\hat{\phi}_k + 2^{-k-1}
ho \leq \psi_k \leq \hat{\phi}_k + 2^{-k}
ho$$

and we can see that a sequence ψ_k decreases to u.

Acknowledgements

The author would like to express his gratitude to A. Sukhov for helpful discussions on the subject of this paper.

References

- [1] Z. Błocki, On the definition of the Monge–Ampère operator in \mathbb{C}^2 , Math. Ann. 328 (2004) 415–423.
- [2] K. Diederich, A. Sukhov, Plurisubharmonic exhaustion functions and almost complex Stein structures, Michigan Math. J. 56 (2) (2008) 331-355.
- [3] F. Haggui, Fonctions FSH sur une variété presque complexe, C. R. Acad. Sci. Paris, Ser. I 335 (6) (2002) 509-514.
- [4] R. Harvey, B. Lawson, Potential theory on almost complex manifolds, Ann. Inst. Fourier (Grenoble) (2014), forthcoming, arXiv:1107.2584.
- [5] R. Harvey, B. Lawson, S. Pliś, Smooth approximation of plurisubharmonic functions on almost complex manifolds, in preparation.
- [6] S. Ivashkovich, J.-P. Rosay, Schwarz-type lemmas for solutions of ∂-inequalities and complete hyperbolicity of almost complex manifolds, Ann. Inst. Fourier (Grenoble) 54 (7) (2004) 2387–2435.
- [7] U. Kuzman, Poletsky theory of discs in almost complex manifolds, Complex Var. Elliptic Equ. 57 (2) (2014) 262–270.
- [8] S. Pliś, Monge–Ampère operator on four dimensional almost complex manifolds, arXiv:1305.3461.
- [9] E. Poletsky, Plurisubharmonic functions as solutions of variational problems, in: Several Complex Variables and Complex Geometry, Part 1, Santa Cruz, CA, 1989, in: Proc. Sympos. Pure Math., vol. 52, Amer. Math. Soc., Providence, RI, 1991, pp. 163–171.

⁴ Such domain *D* is called a Stain domain, see [2]. Here we can take $D = \{|z - P| < \varepsilon\}$ and $\rho = -\log(\varepsilon - |z - P|^2)$ for $\varepsilon > 0$ small enough.

³ "A function *u* is strictly plurisubharmonic on *D*" means as usually that for any $\varphi \in C_0^2$ there is $\varepsilon > 0$ such that $u + \varepsilon \varphi$ is plurisubharmonic. We write here *J*-plurisubharmonic instead of plurisubharmonic to stress that a function is plurisubharmonic with respect to the almost complex structure *J* (note that on *D* we have also the almost complex structure *J*_{st}).