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RESUME

Il est connu que le noyau de Bergman associé a L, ot1 L est un fibré en droite positif sur
une variété complexe compacte, admet un développement asymptotique. Nous prouvons
de maniére élémentaire que le terme sous-principal de ce développement est donné par la
courbure scalaire.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let M be an n-dimensional complex compact manifold. Let L — M be a Hermitian holomorphic line bundle which is
positively curved. Let g be the corresponding Riemannian metric of M, so g(X,Y)=i®(L)(X, JY), where ©(L) is the Chern
curvature of L and J is the complex structure of M.

For any k € N, let E; = HO(M, L¥) be the space of holomorphic sections of L¥. M being compact, Ej is finite dimensional.
It has a natural scalar product given by

(s, t) =/(s, i, s,tekg
M

where (s, t) is the pointwise scalar product and @ = (i@ (L))"/n! is the Liouville measure. Introduce an orthonormal basis
Ski» i=1,..., Ny of E. For any p,q e M, let

Ni
M(p, @) =Y sti(p) ®5ki(q) € Ly ® L

i=1
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I is a holomorphic section of L X [¥ — M x M. It is the Schwartz kernel of the orthogonal projection of _C°°(M,L")
onto Ej. It is called the Bergman kernel of LK. The Hermitian structure induces an isomorphism between L¥ ® L¥ and the
trivial complex line bundle over M so that IT;(x, x) € C. Let n be the complex dimension of M.

Theorem 1.1. For any p € M, we have

IT(p. p) = (%) (1 it 20 +o(k—1)>

where p € C*°(M, R) is the scalar curvature of g.

Actually a stronger result holds: ITi(p, p) has a full asymptotic expansion in negative power of k whose coefficients are
given by universal polynomials in the curvature of g and its successive derivatives. The first results on the asymptotics of
I}, are due to Bouche [3] and Tian [19]. The existence of the asymptotic expansion has been obtained independently by
Catlin [5] and Zelditch [21], who deduced it from the seminal work of Boutet de Monvel and Sjoéstrand [4]. An algorithm to
compute the coefficients has been given by Lu in [15]. Later, other algorithms have been proposed by the author [6], Dai,
Liu and Ma [9], Berman, Berndtsson and Sjostrand [1] and Ma and Marinescu [17,18]. More recently, a closed formula based
on Feynman diagram has been given by Xu [20].

All these works are rather technical and reserved to the specialists. The goal of this note is to provide an elementary
proof of Theorem 1.1. This proof is inspired by the survey article of Berndtsson [2], where a simple proof for the leading
order term IT(p, p) ~ (2’—‘71)” was obtained. So the new argument is the elementary computation of the second term. It is
not clear whether we can compute the subsequent terms of the asymptotic expansion with the method presented here.

The fact that the subprincipal term is given by the scalar curvature was important in the work of Donaldson on balanced
metrics [11] and in the analysis of Berezin-Toeplitz operators [6-8]. The next terms have applications to the extension of
Donaldson’s work by Fine regarding the quantization of the Mabuchi energy [13]. More precisely, this latter paper is based
on the asymptotic expansion of the Toeplitz kernels established by Ma and Marinescu in [17,18] (cf. also [16]).

As the referee pointed out, another short proof of Theorem 1.1 appears in the lecture notes of Donaldson [12].

2. Some general estimates

For any section s of a Hermitian bundle over M, we denote by |s| € C*°(M, R) the pointwise norm of s and by ||s| the
square root of the integral of |s|?x over M. We introduce a metric on (T®'M)* and define, for any k, the metrics of L¥ and
Lk ® (TOTM)* by tensoring the ones of L and (T%!M)*. The following theorems are well known. The first one is proved by
applying Cauchy formula on a ball of radius k~!. The second one is a version of the Kodaira-Hérmander estimates.

Theorem 2.1. For any Hermitian holomorphic line bundle M — L with M compact, there exists C > 0 such that for any k > 0, for any
s€C®(M, L¥) and any p € M, we have:

Is(p)| < C(k‘"llsll +k~sup |5s|>.
M

Theorem 2.2. For any Hermitian holomorphic line bundle M — L that is positively curved, with M compact, there exist ko and C > 0
such that, for any k > ko, for any s € C*°(M, L¥) which is orthogonal to E, = HO(M, LK), we have:

lIslI* < Ck~'[1as|1>.
Proof. Let us sketch the proof. Let V =3 + 3 be the Chern connection of L¥. Introduce the Laplacian Ay, = 83" + 3*3 :

Q2%4M, ¥ — 20¢(M, L¥). As a consequence of the Bochner-Kodaira-Nakano identity, Chapter 4 in [10], there exist ko and
C > 0 such that, for any k > ko and any t € 2%1(M, L¥),

(Arat, t) = kit]?/C. 1
By Hodge Theorem, we have an orthogonal decomposition
C®(M, L¥) = Ex @ Ag o (C(M, L¥)).

So for any s € C*°(M, L¥) orthogonal to Ej, there exists t € £291(M, L¥) such that s = 3*t and 3t = 0. Consequently ds =
Ay 1t. By Eq. (1) and the Cauchy-Schwarz inequality, we have k|t)1? < CllAk 1t]lltll, which implies that k[|t|| < C||Ak1£]l.
Consequently

Cllas|1* = CllAratl® = kIl Agatll = k(t, Agat) =k]s|1*

where we have used again the Cauchy-Schwarz inequality. O
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3. The proof
We have the following characterization of the Bergman kernel on the diagonal.

2
Lemma 3.1. For any k e Nand p € M, ITi(p, p) = SUDsc,\ (0} %.

Proof. Since any unitary s € Ey is contained in an orthonormal basis, |s(p)|2 < Ik (p, p). ~
Conversely, let (s¢;) be an orthonormal basis of E. Let £ be a unitary vector of L’f,. Define s = ) A;S; € Ex with

Ai = Ski(p)/€. Then |s(p)|?/lIs|I> = Mk(p, p). O

Let p € M. Introduce normal coordinates (z;) centered at p. Then L has a local holomorphic frame o defined on an open
neighborhood U of p such that the function ¢ = —2In|o| satisfies ¢ = @4 + O(|z|) with

n
G
_ 2 B _asp
</’4—Z|Zz| + Z _oz!ﬂ!Z z".
=1 lal.1Bl=2

Here the Gy, g are complex numbers. Since ® (L) = 99, the scalar curvature satisfies

p(p)=-— Z Geg,eq- (2)

£,q=1

Restricting U if necessary, we have that ¢(q) > 0 for any q € U \ {p}. Introduce ¥ € C>**(M) such that v =1 on a neighbor-
hood of p and the support of ¢ is contained in U. Extend o to M by setting o(q) =0 for all q ¢ U. Then for any integer k,
define s; as the harmonic part of ¥o¥, so that s; is holomorphic and sy — ¥ o® is smooth and orthogonal to Ej.

We easily check that [3(yo%)| < C1e*/€1 uniformly on M for some C; > 0. By Theorem 2.1 and Theorem 2.2, we obtain
that

sk — prok| < Crek/C

uniformly on M for some Cy > 0.

Lemma 3.2. We have that

[s6(p)] =1+0(™/%) and ||sk||2=(217n> (1"‘_]@%(”2))'

Proof. Since ® (L) = 33¢p, we have that p = det(d%¢/8z,8zm) iien, Where

fieb =i dz1 A ... Adzg AdZy A ... AdZ.
Furthermore det(32¢/8z,0zn) = d3 + O(|z|>) with

n
d)=1+ Z Ggq’grzqfr.
t,q,r=1

So by the Laplace method, Theorem of 7.7.5 of [14], with Af =3, 82 f /82,02,

_ 2m\" _ . _ A2 Gap_g- B
/|w|ze "‘OM:(T) (1+k lA|: Z Ggq,grzqzr:| —k 17[ Z ﬁﬁ!z"‘zﬁ]+0(k %)
U

£,q,r=1 lee],|Bl=2
2 \" 1 «
= (T) (1 +k_15 Z GZq,Zq +O(k_2)>
£,q=1

We get the conclusion by using Eq. (2) and the fact that [|sx|2 = [, [¥[2e ™ u + O %), O

Lemma 3.3. There exists a sequence (Cy) of positive numbers such that for any k > 1, for any s € HO(U, LX), we have

2 k" 100 -
|s(p)] g(g) <1+k 1%+k 3/2ck> f s’ e,

B(TE)

where foranyr>0,B(r)={qeU/>_ |z (q)|> < 2. Furthermore, for any € > 0, C, = O(kS).
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Proof. Consider the polynomial ¢4 and d; introduced previously. Working in polar coordinates, one sees that the integral
of z%ZP |11, on B(r) vanishes if o £ B. Consequently, for any non-vanishing o € N, we have that

/ e k2% d) e, = 0.
B(r)
So for any holomorphic function f:U — C,
_ _ 2 2
/ e 4| f12dypurenr = f e (| f()|" +|f = F(P)]”) dattrep-
B(r) B(r)

We obtain that

fB(r) e—k(ﬂ4 |f |2 da freb

2
f]” < 3)
| | Jar € *4 dapiren
Since ¢ = @4 + O(|z°) and w/preb = da + O(|z|?), there exists C > 0 such that on a neighborhood of p:
~pa < —¢@+Clz]> and da < L(l +Clz?).
MLeb
So if |z| <r/~/k, then
—k@a < —kg +Cr’k** and d; < (1+Crik—3/2).
MLeb
Consequently,
/ e 4| f Py puren < K (14 Cr33?) f ek f 2.
Be/vh B(r/VR)
If r =Ink, then
eCrSk—3/2 (l + Cr3k73/2) =1+ (’)((lnk)5k73/2)
so that
/ e k4| f12dapuren < (14 O((Ink)>k/2)) / e | 2. )
B B(nk)

Applying the Laplace method as in the proof of Lemma 3.2, we have:

2m\"
f e_kwdzﬂLeb:(T) (1—k—1—p (zp )+0(/<‘2)>- (5)
B(TY)

Gathering the estimates (3), (4) and (5), we obtain:

k\" ) -
|f(p)|2<<5> (1+/< ]%—i—k 3/2Ck> f e k<ﬂ|f|2M
B(TE)
where C, = O((Ink)®). O

By the previous lemmas, we obtain:

Iy(p,p) = (%) <1 —l—k_l @ + O(k—3/2+6))

for any € > 0. This concludes the proof.

As a final remark, let us point that the characterization in Lemma 3.1 is well known. The peaked section s, and its norm
estimate, Lemma 3.2, were already in [15]. The original argument is the proof of the upper bound, Lemma 3.3, especially
inequality (3).
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