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In this paper, we first prove that any two conformal contact forms on a compact CR 
manifold that have the same pseudo-Hermitian Ricci curvature must be different by a 
constant. In another direction, we prove a CR analogue of the conformal Schwarz lemma 
of Riemannian geometry.
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r é s u m é

Dans cet article, nous montrons d’abord que deux formes de contact conformes quelconques 
sur une variété compacte CR qui ont la même courbure de Ricci pseudo-hermitienne ne 
diffèrent que d’un facteur constant. Dans une autre direction, nous prouvons un analogue 
CR du lemme de Schwarz conforme de la géométrie riemannienne.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

In this paper, we are going to prove some rigidity results in CR geometry. First, we recall the following result of Xu 
in [8]:

Theorem 1.1. Suppose (M, g) is a compact Riemannian manifold without boundary of dimension ≥ 2. If g̃ = e2u g such that their Ricci 
curvatures satisfy Ric(g̃) = Ric(g), then u is a constant.

We will prove the CR analog of Theorem 1.1. More precisely, we prove the following:

Theorem 1.2. Suppose (M, θ) is a compact strongly pseudoconvex CR manifold of real dimension 2n + 1 with a given contact form θ . 
If θ̃ = e2uθ is such that their pseudo-Hermitian Ricci curvatures satisfy Ric(θ̃ ) = Ric(θ), then u is a constant.

In another direction, we recall the following conformal Schwarz lemma, which was first proved by Yau [9]:
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Theorem 1.3. Suppose (M, g) is a compact Riemannian manifold without boundary of dimension ≥ 2 whose scalar curvature satisfies 
R g ∈ [Rmin, Rmax] ⊂ (−∞, 0), and gY is the Yamabe metric conformally equivalent to g with scalar curvature R gY = −1. Then we 
have

gY

|Rmin| ≤ g ≤ gY

|Rmax| .

In [7], Suárez-Serrato and Tapie used the Yamabe-type flow to reprove Theorem 1.3. Using the CR Yamabe-type flow, we 
will prove the following CR analog of Theorem 1.3:

Theorem 1.4. Suppose (M, θ) is a compact strongly pseudoconvex CR manifold of real dimension 2n + 1 whose Webster scalar cur-
vature satisfies Rθ ∈ [Rmin, Rmax] ⊂ (−∞, 0), and θY is the contact form conformally equivalent to θ with Webster scalar curvature 
RθY = −1. Then we have:

θY

|Rmin| ≤ θ ≤ θY

|Rmax| . (1.1)

As a corollary, we have the following:

Corollary 1.5. Suppose (M, θ) is a compact strongly pseudoconvex CR manifold of real dimension 2n + 1 whose Webster scalar curva-
ture satisfies Rθ ∈ [Rmin, Rmax] ⊂ (−∞, 0). Then we have:

Vol(M, θY )

∣∣∣min
M

Rθ

∣∣∣−(n+1) ≤ Vol(M, θ) ≤ Vol(M, θY )

∣∣∣max
M

Rθ

∣∣∣−(n+1)

,

and each equality implies that Rθ is constant.

Corollary 1.6. Suppose (M, θ) is a compact strongly pseudoconvex CR manifold of real dimension 2n + 1 whose CR Yamabe invariant 
satisfies Y (M, θ) < 0. Then we have:(

min
M

Rθ

)
Vol(M, θ)

1
n+1 ≤ Y (M, θ) ≤

(
max

M
Rθ

)
Vol(M, θ)

1
n+1 ,

and each equality implies that Rθ is constant.

The Riemannian version of Corollaries 1.5 and 1.6 was obtained in [7] and [5], respectively. See Corollary 16 in [7] and 
Lemma 1.6 in [5].

2. Proof of Theorem 1.2

In this section, we prove Theorem 1.2. We adopt the notation in [1].

Proof of Theorem 1.2. If θ̃ = e2uθ , then by the formula in p. 299 of [1] (see also [6]), their pseudo-Hermitian Ricci curvatures 
satisfy

R̃λμ̄ = Rλμ̄ − (n + 2)(uλμ̄ + uμ̄λ) − (
�θ u + |∇θ u|2θ

)
hλμ̄, (2.1)

where hλμ̄ is the component of the Levi form (see p. 32 in [1]). Explicitly, let {Tα : 1 ≤ α ≤ n} be a local frame of T 1,0(M)

on M , then

hλμ̄ = Lθ (Tα, Tμ)

where Lθ = −√−1 dθ is the Levi form with respect to θ . By assumption, Ric(θ̃ ) = Ric(θ), (2.1) implies that

−(n + 2)(uλμ̄ + uμ̄λ) − (
�θ u + |∇θ u|2θ

)
hλμ̄ = 0. (2.2)

On the other hand, if we define the traceless Ricci tensor

Bλμ̄ = Rλμ̄ − R

n
hλμ̄

where R = Rλμ̄hλμ̄ is the Webster scalar curvature, then we have:
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B̃λμ̄ = R̃λμ̄ − R̃

n
h̃λμ̄

= R̃λμ̄ − 1

n

(
R̃λμ̄h̃λμ̄

)
h̃λμ̄

= Rλμ̄ − 1

n

(
e−2u Rλμ̄hλμ̄

)
e2uhλμ̄

= Rλμ̄ − R

n
hλμ̄ = Bλμ̄, (2.3)

where we have used the fact that h̃λμ̄ = e2uhλμ̄ because the Levi forms satisfy Lθ̃ = e2u Lθ (see for example (1.15) in p. 6 
in [1]) and the assumption Ric(θ̃ ) = Ric(θ). Note that if θ̃ = e2uθ , then by the formula in p. 299 of [1] we have:

B̃λμ̄ = Bλμ̄ − (n + 2)(uλμ̄ + uμ̄λ) + n + 2

n
(�θ u)hλμ̄ (2.4)

Combining (2.3) and (2.4), we obtain:

−(n + 2)(uλμ̄ + uμ̄λ) + n + 2

n
(�θ u)hλμ̄ = 0. (2.5)

It follows from (2.2) and (2.5) that

(n + 1)�θ u + |∇θ u|2θ = 0.

Integrating it over M , we have:∫
M

|∇θ u|2θ dV θ = 0,

which implies that u is constant. This proves Theorem 1.2. �
3. CR Yamabe-type flow

In this section, we prove Theorem 1.4. We consider

∂θt

∂t
= (

Rmax(θt) − Rθt

)
θt,

θ0 = θ (3.1)

where Rmax(θt) = maxM Rθt , which we call the curvature-normalized increasing CR Yamabe flow. If we write θt = utθ for 
some positive function ut , then (3.1) can be written as

∂ut

∂t
= (

Rmax(θt) − Rθt

)
ut ≥ 0.

That is to say, the curvature-normalized increasing CR Yamabe flow increases the conformal factor of θt .
Let θ be a contact form whose Webster scalar curvature satisfies:

Rmin ≤ Rθ ≤ Rmax < 0. (3.2)

Let θ̃t be the solution to the (normalized) CR Yamabe flow:

∂θ̃t

∂t
= (rθ̃t

− R θ̃t
)θ̃t,

θ̃0 = θ, (3.3)

where

rθ̃t
=

∫
M R θ̃t

dV θ̃t∫
M dV θ̃t

is the average scalar curvature of (M, θ̃t). Since Rmax < 0, it follows from [10] that (3.3) has a unique solution, defined for 
all t ≥ 0. Moreover, the contact form θ̃t converges when t → ∞ to a contact form that is conformal to θ and has constant 
Webster scalar curvature and the same volume as θ . See also [3].
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Set

φ(t) =
t∫

0

(
Rmax(θ̃τ ) − rθ̃τ

)
dτ (3.4)

for all t ≥ 0, and let a : [0, ∞) → [0, ∞) be the unique solution to

a′(t) = e−φ(a(t)),

a(0) = 0. (3.5)

Hence, the map a is increasing and well defined as long as it stays finite. It follows from the exponential convergence of 
the contact form shown by Zhang in [10] that there exists C, ε > 0 such that for all t ≥ 0, we have:∣∣Rmax(θ̃t) − rθ̃t

∣∣ ≤ Ce−εt .

Therefore, a exists for all t ≥ 0, and a(s)
s converges to a positive limit a∞ when t → ∞.

Lemma 3.1. If we define for all t ≥ 0,

θt = eφ(a(t))θ̃a(t), (3.6)

then θt satisfies (3.1).

Lemma 3.1 follows from differentiating (3.6) and applying (3.3)–(3.5). Therefore, θt given by (3.6) is a solution to (3.1). 
By the above argument, since the map is an increasing bijection on [0, ∞), the uniqueness of the solution to (3.1) follows 
directly from the uniqueness of the solution to (3.3). We will prove that the Webster scalar curvature bounds are preserved 
along the flow.

Lemma 3.2. For all t ≥ 0, the Webster scalar curvature of θt satisfies:

∂ Rθt

∂t
= (n + 1)�θt Rθt + Rθt

(
Rθt − Rmax(θt)

)
(3.7)

and

Rmin ≤ Rθt ≤ Rmax. (3.8)

Proof. Note that the Webster scalar curvature of the contact from θ̃t satisfies (see (3.4) in [2]):

∂ R θ̃t

∂t
= (n + 1)�θ̃t

R θ̃t
+ R θ̃t

(R θ̃t
− rθ̃t

).

If follows from (3.4), (3.5), and (3.6) that

∂ Rθt

∂t
= ∂

∂t

(
e−φ(a(t))R θ̃a(t)

)
= −φ′(a(t)

)
a′(t)e−φ(a(t))R θ̃a(t)

+ a′(t)e−φ(a(t))
∂ R θ̃a(t)

∂a(t)

= e−2φ(a(t))[−(
Rmax(θ̃a(t)) − rθ̃a(t)

)
R θ̃a(t)

+ (n + 1)�θ̃a(t)
R θ̃a(t)

+ R θ̃a(t)
(R θ̃a(t)

− rθ̃a(t)
)
]

= e−2φ(a(t))[(n + 1)�θ̃a(t)
R θ̃a(t)

+ R θ̃a(t)

(
R θ̃a(t)

− Rmax(θ̃a(t))
)]

= (n + 1)�θt Rθt + Rθt

(
Rθt − Rmax(θt)

)
which proves (3.7). To prove (3.8), we first note that

Rmin ≤ Rθ0 ≤ Rmax. (3.9)

in view of (3.2). To this end, for any fixed ε > 0, we define a function Fε : M × [0, ∞) →R by

Fε(x, t) = Rθt (x, t) − (1 + t)ε.

We claim that Fε(x, t) < Rmax for all (x, t) ∈ M × [0, ∞). By contradiction, we suppose that

Fε(x0, t0) ≥ Rmax (3.10)
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for some (x0, t0) ∈ M × [0, ∞). Note that t0 > 0 because of (3.9). We may assume that t0 is the smallest t that satisfies 
(3.10). Then we have:

Fε(x, t) < Rmax for (x, t) ∈ M × [0, t0), Fε(x, t0) ≤ Rmax for x ∈ M, Fε(x0, t0) = Rmax. (3.11)

Since M is compact, we may assume that Fε (x0, t0) = maxx∈M F (x, t0). Hence, by (3.7), (3.10), and (3.11), we have at (x0, t0):

0 ≤ ∂ Fε

∂t
= ∂ Rθt

∂t
− ε

= (n + 1)�θt Rθt + Rθt

(
Rθt − Rmax(θt)

) − ε

≤ Rθt

(
Rθt − Rmax(θt)

) − ε ≤ −ε,

which contradicts the assumption that ε > 0. This proves the claim that Fε(x, t) < Rmax for all (x, t) ∈ M × [0, ∞). Letting 
ε → 0, we obtain Rθt ≤ Rmax.

On the other hand, to prove Rθt ≥ Rmin, it suffices to consider the function Gε : M × [0, ∞) →R defined as

Gε(x, t) = Rθt (x, t) + (1 + t)ε

where ε > 0 is fixed. Following the same proof as above, one can prove that Gε (x, t) > Rmin for all (x, t) ∈ M × [0, ∞). 
Letting ε → 0, we obtain Rθt ≥ Rmin. This proves the assertion. �

If follows from [10] that the solution θ̃t to (3.3) converges to the unique contact form θ∞ with constant Webster scalar 
curvature in the conformal class of θ with same volume as θ . Let us recall that the solution θt of (3.1) is given by

θt = eφ(a(t))θ̃a(t)

by Lemma 3.1, with a strictly increasing, a(t)
t converging to a positive limit when t → ∞ and φ(t) converges exponentially 

fast to a constant l when t → ∞. This implies that θt converge to the metric

θmax = elθ∞
which has constant Webster scalar curvature. Since for all t ≥ 0, we have Rmin ≤ Rθt ≤ Rmax by Lemma 3.2, the Webster 
scalar curvature of θmax satisfies Rmin ≤ Rθmax ≤ Rmax.

Combining all these, we have the following:

Theorem 3.3. Let (M, θ) be a compact strongly pseudoconvex CR manifold of real dimension 2n + 1 whose Webster scalar curvature 
satisfies

Rmin ≤ Rθ ≤ Rmax < 0.

Then the curvature-normalized increasing CR Yamabe flow (3.1) with initial contact form θ has a solution θt = utθ defined for all t ≥ 0. 
Moreover, the conformal factor t �→ ut is non-decreasing in time t, and the flow θt converges as t → ∞ to a contact form θmax in the 
conformal class of θ with constant Webster scalar curvature Rθmax ≤ Rmax .

Now let us consider the curvature-normalized decreasing CR Yamabe flow on M with initial contact form θ , which is 
defined as

∂θt

∂t
= (

Rmin(θt) − Rθt

)
θt,

θ0 = θ. (3.12)

where Rmin(θt) = minM Rθt . By using the analogous arguments to prove Theorem 3.3, we can prove the following:

Theorem 3.4. Let (M, θ) be a compact strongly pseudoconvex CR manifold of real dimension 2n + 1 whose Webster scalar curvature 
satisfies

Rmin ≤ Rθ ≤ Rmax < 0.

Then the curvature-normalized decreasing CR Yamabe flow (3.12) with initial contact form θ has a solution θt defined for all t ≥ 0. 
Moreover, Moreover, the conformal factor t �→ ut is non-increasing in time t, and the flow θt converges as t → ∞ to a contact form 
θmin in the conformal class of θ with constant Webster scalar curvature Rθmin ≥ Rmin .

Now we are ready to prove Theorem 1.4.

Proof of Theorem 1.4. Suppose (M, θ) is a compact strongly pseudoconvex CR manifold of real dimension 2n + 1 whose 
Webster scalar curvature satisfies Rθ ∈ [Rmin, Rmax] ⊂ (−∞, 0). Then it follows from Theorem 3.3 that the curvature-
normalized increasing CR Yamabe flow with initial contact form θ increases the conformal factor, and converges to the 
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contact form θmax with constant Webster scalar curvature Rθmax ≤ Rmax. By Theorem 7.1 in [4] (see also [3]), θmax = θY|Rθmax | . 
This gives the upper bound in (1.1). Similarly, it follows from Theorem 3.4 that the curvature-normalized decreasing CR 
Yamabe flow with initial contact form θ decreases the conformal factor, and converges to the contact form θmin with con-
stant Webster scalar curvature Rθmin ≥ Rmin. By Theorem 7.1 in [4] again, θmin = θY|Rθmin | . This gives the lower bound in (1.1). 
This completes the proof of Theorem 1.4. �

Using Theorem 1.4, we can prove Corollary 1.5 and 1.6.

Proof of Corollary 1.5. By integrating (1.1) over M , we obtain:

Vol(M, θY )

∣∣∣min
M

Rθ

∣∣∣−(n+1) ≤ Vol(M, θ) ≤ Vol(M, θY )

∣∣∣max
M

Rθ

∣∣∣−(n+1)

.

If Vol(M, θ) = Vol(M, θY )| minM Rθ |−(n+1) , then we have θ = θY|Rmin| , which implies that Rθ is constant. Similarly, if 
Vol(M, θ) = Vol(M, θY )| maxM Rθ |−(n+1) , then we have θ = θY|Rmax| , which again implies that Rθ is constant. �
Proof of Corollary 1.6. By the solution to the CR Yamabe problem (see [4]), there exists a contact form θY conformal to θ
such that its Webster scalar curvature RθY = −1 and the CR Yamabe invariant is attained by θY , i.e.

Y (M, θ) =
∫

M RθY dV θY

(
∫

M dV θY )
n

n+1
= −Vol(M, θY )

1
n+1 . (3.13)

Combining (3.13) with Corollary 1.5, we obtain(
min

M
Rθ

)
Vol(M, θ)

1
n+1 ≤ Y (M, θ) ≤

(
max

M
Rθ

)
Vol(M, θ)

1
n+1 ,

and each equalities implies that Rθ is constant. �
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