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We discuss two results about projective representations of fundamental groups of quasipro-
jective varieties. The first is a realization result that, under a nonresonance assumption, 
allows us to realize such representations as monodromy representations of flat projective 
logarithmic connections. The second is a lifting result: any representation as above, after 
restriction to a Zariski open set and finite pull-back, can be lifted to a linear representation.
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r é s u m é

Nous discutons deux résultats sur les représentations projectives des groupes fondamen-
taux de variétés quasi-projectives. Le premier est un résultat de réalisation qui, sous une 
hypothèse de non-résonance, permet de réaliser ces représentations comme représenta-
tions de monodromie de connexions projectives plates logarithmiques. Le second est un 
résultat de relèvement : après restriction à un ouvert de Zariski et un revêtement fini, 
toute représentation du type considéré se relève en une représentation linéaire.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

In this note, we study projective representations ρ : π1(X \ H) → PGLm(C), for X a projective complex variety and H an 
algebraic hypersurface in X .

If X is smooth and H is normal crossing, under some nonresonance assumption, we show that ρ can be realized as the 
monodromy representation of a flat logarithmic projective connection; we refer to this as the realization result. This allows us 
to extend to X the analytic Pm−1-bundle over X \ H that underlies the suspension of ρ . Thanks to this and an algebraization 
result of Serre [8], we can derive a second result (lifting result): with no smoothness and normal crossing assumptions for X
and H , any ρ : π1(X \ H) → PGLm(C) is the projectivization of a linear representation, up to adding components to H and
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pulling back by a generically finite morphism Y → X . Contrary to the first, this second result is not new; it is a well-known 
fact in étale cohomology that any class in H2(X \ H, Z/mZ) can be made trivial after the two operations mentioned above. 
Yet, it seems of interest to show how it can be derived quickly from the realization result.

We plan to use the lifting result in a future paper about algebraic isomonodromic deformations.
The proof of the realization result is an adaptation of the work of Deligne [3] on the Riemann–Hilbert problem. For the 

explicitness of basic ideas in this field, we will refer to [1]. The case of projective line bundles is considered by Loray and 
Pereira in [7], in relation with transversely projective codimension one foliations. A natural question is to ask whether this 
result could be recovered from a general version of Deligne’s canonical extension that would respect g-connections, for g a 
subalgebra of glm(C).

We should also mention the paper [5], which describes in cohomological terms the obstructions to the existence of linear 
and projective logarithmic connections on logarithmic tangent bundles.

2. Flat projective connections

2.1. Holomorphic connections

Definition 2.1. Let m > 0. Let X be a complex manifold. A Pm−1-bundle on X is a holomorphically locally trivial bundle 
on X , π : P → X with fiber the complex (m − 1)-dimensional projective space Pm−1.

Definition 2.2. Let X be a complex manifold. A holomorphic flat projective connection ∇ on the Pm−1-bundle π : P → X is a 
regular codimension m −1 holomorphic foliation on P , transversal to any fiber of π . Let � ∈ X . The monodromy representation
of ∇

ρ : π1(X, �) → Aut
(
π−1(�)

)

is defined as follows. For any loop α(t) in X with base point �, for any y ∈ π−1(�), there is a unique lifting path α̃y(t)
of α(t), with α̃y(0) = y and contained in a leaf of ∇; we set ρ(α) to be the automorphism of π−1(�) which satisfies 
ρ(α)(y) = α̃y(1) for every y ∈ π−1(�).

Strictly speaking, this map is an antirepresentation, but we maintain the usual shortcut of “monodromy representation”. 
Also, in effective computations, we are led to use an isomorphism π−1(�) 

φ� P
m−1 and replace ρ by ρ̃ : π1(X, �) → PGLm(C)

given by ρ̃(α) = φ ◦ ρ(α) ◦ φ−1. We also make the abuse of language of naming ρ̃ the monodromy representation of ∇ . As 
φ is arbitrary, ρ̃ is well defined only up to conjugation by an element of PGLm(C).

It is well known that any ρ : π1(X, �) → PGLm(C) can be realized as the monodromy representation of a unique (up to 
bundle isomorphism) flat projective connection, see [2, Chapter V §4].

For any flat holomorphic linear connection D : V → Ω1
X ⊗ V on a vector bundle V over X , the foliation induced by 

horizontal sections (i.e. sections s such that Ds = 0) on the total space V descends to a flat projective connection ∇ = P(D)

on P(V ). We call P(D) the projectivization of D .
Any flat connection is locally the trivial one on the trivial bundle. For this reason, any flat projective connection is locally 

the projectivization of a flat linear connection. Also we have a form of uniqueness.

Lemma 2.3. Let Di , i = 1, 2 be two flat holomorphic connections on the same vector bundle V , with equal traces

tr(D1) = tr(D2) : det(V) → Ω1
X ⊗ det(V).

Then P(D1) = P(D2) if and only if D1 = D2 .

Proof. Using local trivializations, it suffices to check the result for the trivial bundle V =Om .
Let ω = (ωi, j) be a size m square matrix with coefficients in Ω1

X (X) and define D(y) = dy − ω · y for any vector valued 
holomorphic function y = (y1, . . . , ym)t ∈ Om , we suppose D is flat, that is dω = ω ∧ ω. We have a system of differential 
equations that define P(D) in the affine chart ym 	= 0, setting zi = yi/ym, i = 1, . . . , m − 1, we find:

dzi = ωi,m + zi(ωi,i − ωm,m) +
m−1∑

k=1,k 	=i

ωi,kzk −
m−1∑
k=1

ωm,kzi zk, i = 1, . . . ,m − 1.

We see that the coefficients ωi,k, k 	= i of ω are determined by this system; so do the differences Δi := ωi,i − ωm,m . The 
family (Δi) and trace(ω) determine m · ωm,m = trace(ω) − ∑m−1

i=1 Δi , and subsequently every ωi,i . �
Proposition 2.4. Let X be a complex manifold and ∇ be a holomorphic flat projective connection on P(Om

X ), then ∇ = P(D) for a 
unique holomorphic flat linear trace-free connection D :Om

X → (Ω1
X )m.

By trace-free, we mean D(y) = dy − ω · y with trace(ω) = 0.
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Proof. We can cover X with open sets Ui such that the connection is trivializable on Ui ; taking Ui small enough, this 
means there exist holomorphic maps Gi : Ui → SLm(C) such that, for φi = id × PGi , ∇|Ui = φ∗

i (P(d)), where d is the trivial 
linear connection on Om

Ui
. Also we can define flat linear connections by Di := ψ∗

i d, where ψi = id × Gi . The connections Di
are trace free because so is d and the matrices Gi take values in SLm(C). For clarity, let us draw a commutative diagram.

(Ui × Pm−1,∇)

φi

(Ui ×Cm, Di)
P

ψi

(Ui × P
m−1,P(d)) (Ui ×C

m,d)
P

Let Ui, j := Ui ∩ U j . If Ui, j 	= ∅, the connections Di |Ui, j
and D j |Ui, j

are both trace-free connections on the trivial bundle 
with projectivization ∇|Ui, j , thus they are equal by Lemma 2.3. This means the connection Di extends to a flat holomorphic 
connection D on the trivial rank m vector bundle over X with P(D) = ∇ . We have proved existence of the sought D; 
uniqueness follows from Lemma 2.3. �
Remark 1. It is tempting to try to generalize Proposition 2.4 by replacing P(Om

X ) by any projectivization of a rank m vector 
bundle. However, this would mean that the map H2(X, C∗) → H2(X, O∗) would be injective on the image of the obstruction 
map H1(X, PGLm(C)) → H2(X, C∗). The work [4] allows us to see that this cannot be the case on any Abelian variety of 
dimension g; for any m > 1 of the form m = r g , r ∈N

∗ .

2.2. Logarithmic extensions

Definition 2.5. Let X be a complex manifold and H an analytic hypersurface. Let P → X be a Pm−1-bundle on X . A loga-
rithmic flat projective connection on P , with poles in H , is a singular holomorphic codimension m − 1 foliation ∇ on P with 
the following properties.

(i) The foliation ∇ restricts to a holomorphic flat projective connection on P |X\H .
(ii) For every x ∈ H , there exists a neighborhood U of x and a flat logarithmic connection D on the trivial rank m

vector bundle over U with poles in H , such that there exists a bundle isomorphism φ : P |U → P(Om
U ) satisfying 

φ∗
P(D)|U\H = ∇|P |U\H .

We define the monodromy representation of ∇ to be the one of ∇|P |X\H .

Let us introduce a property Pm(M) for an element M ∈ PGLm(C)

Pm(M) :
⎧⎨
⎩

for any M̃ ∈ GLm(C) with P(M̃) = M,

for any two eigenvalues λ1, λ2 of M̃,

λm
1 = λm

2 ⇒ λ1 = λ2.

Of course it suffices to check this condition for only one lift M̃ ∈ GLm(C).
For X a complex manifold and H a hypersurface in X , if H j is a component of X we call α ∈ π1(X \ H, �) a simple loop 

around H j if α is conjugate by a path to (x, z)(t) = (e2iπt, z0) for a coordinate patch (x, z1, . . . , zl) of X centered at a point 
of {x = 0} ⊂ Hi . Our realization result is the following.

Theorem 2.6. Let X be a complex manifold. Let H be a normal crossing analytic hypersurface on X. Let ρ : π1(X \ H, �) → PGLm(C)

be an antirepresentation. Suppose, for every simple loop α ∈ π1(X \ H, �) around any component of H, we have Pm(ρ(α)).
Then ρ is the monodromy representation of a flat projective logarithmic connection with poles in H.

Before proving Theorem 2.6, we introduce local models and study their symmetries.
For A1 ∈ Mm(C), and coordinates (x1, . . . , xn) ∈C

n set for y a local section of Om ,

D A1(y) := dy − A1dx1

x1
y.

The monodromy of D A1 is generated by exp(2iπ A1).
More generally, for a family A = (A1, . . . , Ak) ∈ Mm(C)k of commuting matrices with k ≤ n, we can define a flat connec-

tion D A on Om by

D A(y) := dy −
k∑

i=1

Aidxi

xi
y.

We say that A1 ∈ Mm(C) is nonresonant if for any pair μ1, μ2 of eigenvalues of A1, μ1 − μ2 /∈N
∗ .
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Lemma 2.7. Let A1 ∈ Mm(C) be nonresonant. Let τ1, τ2 be two size-m square matrices of holomorphic 1-forms defined on a neigh-
borhood U of 0 in Cn. Let ωi := A1

dx1
x1

+ τi , i = 1, 2.
For i = 1, 2; let Di(y) := dy − ωi · y and suppose Di is a flat connection (i.e. dωi = ωi ∧ ωi ).
Then any isomorphism between the connections Di |U\{x1=0} extends to an isomorphism on the whole of U .

Proof. This is an easy modification of the proof of [1, Lemme 3]; see also [3, Prop. 5.2.d)]. �
We will make use of the following normalisation result.

Theorem 2.8 (Poincaré). Let ω = (ωi, j)1≤i, j≤m, be a matrix of meromorphic 1-forms on a neighborhood U of 0 in Cn, with coordinates 
x1, . . . , xn. Suppose dω = ω ∧ ω. Suppose the only pole of ω is x1 = 0 and ω = A1

dx1
x1

+ τ for a holomorphic matrix 1-form τ and 
A1 ∈ Mm(C) a non-resonant matrix, then there exists a neighborhood V ⊂ U of 0, such that the connection D on Om

V defined by 
D(y) = dy − ω · y is isomorphic to D A1 |V .

Proof. The result for only one variable is well known and allows us to suppose τ|(x2,...,xn)=0 = 0. Then, the coincidence of 
monodromy yields the required isomorphism outside x1 = 0. Finally, our nonresonance assumption allows us to extend the 
isomorphism holomorphically at x1 = 0 by Lemma 2.7. �
Lemma 2.9. Let A1 ∈ Mm(C). Suppose mA1 is nonresonant. Let U be a neighborhood of 0 in Cn and suppose we have an automorphism 
φ of the holomorphic projective connection ∇ = P(D A1 |U\{x1=0}), then φ extends to an automorphism of the trivial Pm−1-bundle 
over U .

Proof. We can suppose U is a polydisk. The automorphism φ is of the form (x, z) �→ (x, G(x) · z) for a holomorphic function:

G : U \ {x1 = 0} → PGLm(C).

We can lift this map to a multivalued holomorphic function from U \ {x1 = 0} to SLm(C). Its monodromy is generated by 
M �→ λM , λ satisfying λm = 1. Thus, if the covering π : V → U is defined by (u1, . . . , un) �→ (x1, . . . , xn) = (um

1 , u2, . . . , un), 
there exists a holomorphic function G̃ : V \ {u1 = 0} → SLm(C) satisfying P(G̃(u)) = G ◦ π(u). This function induces an 
automorphism (u, z) �→ (u, G̃(u) · z) of the pull-back P(DmA1 |V \{u1=0}) of ∇ by π . Also, by Lemma 2.3, (u, y) �→ (u, G̃(u) · y)

is an automorphism of DmA1 |V \{u1=0} . By hypothesis, mA1 is nonresonant, thus G̃ and G̃−1 extend to holomorphic functions 
on V , by Lemma 2.7. Thus also extends as desired. �
Proof of Theorem 2.6. Let U0 = X \ H . Let (Hi)i∈I be the components of H . Let αi ∈ π1(U0, �) be a simple loop turning coun-
terclockwise around Hi . For any i, choose a lift Mi ∈ SLm(C) for ρ(αi) and let Ai ∈ Mm(C), with real parts of its eigenvalues 
μ satisfying 0 ≤ �(μ) < 1 be such that exp(2iπ Ai) = Mi . Thanks to P(ρ(αi)), mAi is automatically nonresonant.

Let p ∈ H , and let Hi j , j = 1, . . . , k be the components of H that contain p. Because of normal crossings, there exist a 
neighborhood U p of p and a chart f p : U p

∼→ Δ to Δ = {(x1, . . . , xn) ∈ C
n, |xi | < 2} such that Hi j ∩ U p is sent to x j = 0

by f p . Let �p = f −1
p (1, . . . , 1). The fundamental group π1(U p, �p) is Abelian, generated by the loops (β j) j=1,...,k defined by 

x j(β j(t)) = exp(2iπt), xl(β j(t)) = 1 for l 	= j; t ∈ [0, 1]. Choose a path τ in U0 from � to �p , the loop τβ jτ
−1 defines an 

element γ j ∈ π1(U0, �) conjugate to αi j . The elements (γ j) j=1,...,k commute pairwise.

Choose lifts N j ∈ SLm(C) of ρ(γ j) of the form N j = G j Mi j G−1
j , G j ∈ GLm(C). The Abelianity of 〈(PN j) j〉 ⊂ PGLm(C) gives 

N j1 N j2 N−1
j1

= λN j2 with λm = 1, but Pm(ρ(γ j2 )) yields λ = 1 and we have the Abelianity of 〈(N j) j〉 ⊂ GLm(C).
Because of the latter Abelianity and [1, Lemme 2], there exists a linear flat connection D p on Om

U p
with residues Bi j =

G j Ai j G−1
j on Hi j and monodromy ρ̂p : π1(U p, �p) → SLm(C) given by ρ̂p(β j) = N j ; set ∇p = P(D p). On U0, take ∇0 a 

projective flat connection with monodromy ρ . We denote P p , P0 the underlying bundles of ∇p ,∇0 respectively. Also, set 
U p,0 := U p ∩ U0 = U p \ H , U p,q := U p ∩ Uq .

Consider ρ0
p, ρp : π1(U p, �p) → PGLm(C), the respective monodromies of ∇0|U p,0 and ∇p . We have ρ0

p(β j) =
MτP(N j)M−1

τ = Mτ ρp(β j)M−1
τ , where Mτ is the holonomy of ∇0 over the path τ . Because of this conjugation, we have an 

isomorphism φp,0 : P0|U p,0 → P p |U p,0
, such that φ∗

p,0∇p |U p,0
= ∇0|U p,0 .

Define φ0,p = φ−1
p,0 and denote H0 the set of singular points of H .

By Theorem 2.8 and Lemma 2.9, the composition φp,0 ◦ φ0,q extends to an isomorphism Pq |U p,q\H0
� P p |U p,q\H0

, then 
it extends to φp,q : Pq |U p,q

� P p |U p,q
because H0 has codimension >1 in U p,q . By definition, the functions φi, j satisfy the 

cocycle relations and define a Pm−1-bundle P over X . The local connections ∇ j on P j satisfy φ∗
i, j∇i |Ui, j

= ∇ j |Ui, j
and give 

the sought flat projective logarithmic connection on P .



G. Cousin / C. R. Acad. Sci. Paris, Ser. I 353 (2015) 155–159 159
Remark 2. In this proof, we have used conditions Pm(ρ(αi)) for two reasons: to lift the local monodromy of ∇0 at any 
point of the polar locus and to extend bundle isomorphisms to the polar locus. As can be seen from Definition 2.5, the 
local liftings must exist to extend ∇0 to H . The proof of [4, Lemma 2.3] shows an obstruction to local lifting. The extension 
condition is more subtle. We have chosen the property Pm to have a simple statement; it seems of interest to see how 
these conditions can be weakened.

3. Lifting result

We will (re)prove the following.

Theorem 3.1. Let X be an irreducible projective complex variety and H an algebraic hypersurface in X. Let � be a smooth point of 
X \ H. For any representation ρ : π1(X \ H, �) → PSLm(C), there exists a hypersurface Hρ with H ⊂ Hρ, � /∈ Hρ and a generically 
finite morphism fρ : (Yρ, �ρ) → (X, �) of projective varieties with base points, étale in the neighborhood of �ρ , such that Yρ is smooth 
and the pull-back

f ∗
ρρ : π1

(
Yρ \ f −1

ρ (Hρ), �ρ

) → PSLm(C)

lifts to SLm(C), that is f ∗
ρρ = Pρ̂ , for a representation

ρ̂ : π1
(
Yρ \ f −1

ρ (Hρ), �ρ

) → SLm(C).

Proof. By resolution of singularities, after some birational morphism, we can suppose that X is smooth and H is normal 
crossing; we make this assumption in the sequel.

Let (Hi) be the irreducible components of H and let αi ∈ π1(X \ H, �) be a simple loop around Hi . Take a lift Mi ∈
SLm(C) for ρ(αi). Consider the finite set Si whose elements are finite-order quotients λ/μ of eigenvalues λ, μ of Mi . Set 
S := ⋃

i Si and let O  ⊂ N
∗ be the set given by the orders of the elements of S . Let ν := lcm(O ). Let r : (X1, �1) → (X, �) be 

a finite morphism, étale in the neighborhood of �1, with ramification indices over Hi equal to multiples of ν and such that 
H1 = r−1(H) is a normal crossing hypersurface; the existence of such an r is given, for example, by [6, Theorem 17].

Then, we can apply our realization Theorem 2.6: there exists a flat projective logarithmic connection ∇ with poles in 
H1 with monodromy r∗ρ . Let P be the underlying analytic locally trivial Pm−1-bundle of ∇ and take �1 ∈ r−1(�). By Serre 
[8, Théorème 3, p. 34], P is the analytification of an algebraic locally isotrivial Pm−1-bundle: �1 has a Zariski neighborhood 
U1 ⊂ X1, U1 = X1 \ H̃1 such that there exists a finite étale algebraic covering q : (U2, �2) → (U1, �1) satisfying that q∗ P is 
trivial. We can suppose H1 ⊂ H̃1 and U1 is affine, which we do.

Then, we have an embedding U2 ⊂ Y , U2 = Y , in a smooth projective Y such that the algebraic map q extends to a 
morphism q : Y → X1. By triviality of q∗(P )|U2 and Proposition 2.4, ∇2 := q∗(∇|U1 ) lifts to a trace-free flat linear connection 
over U2. For this reason, the monodromy representation of ∇2 lifts to SLm(C). By construction, this monodromy is q∗r∗ρ . 
Hence, if we define, �ρ := �2, Yρ := Y , fρ := r ◦ q and Hρ to be the codimension 1 part of r ◦ q(Y \ U2), we have the 
situation announced in the theorem. �
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