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We study the Diophantine exponent of analytic submanifolds of m × n real matrices, 
answering questions of Beresnevich, Kleinbock, and Margulis. We identify a family of 
algebraic obstructions to the extremality of such a submanifold, and give a formula for 
the exponent when the submanifold is algebraic and defined over Q. We then apply these 
results to the determination of the Diophantine exponent of rational nilpotent Lie groups.
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r é s u m é

Nous étudions l’exposant diophantien des sous-variétés analytiques de matrices réelles 
m × n et répondons à certaines questions posées par Beresnevich, Kleinbock et Margulis. 
Nous identifions une famille d’obstructions algébriques à l’extrémalité d’une telle sous-
variété, et donnons une formule pour l’exposant lorsque celle-ci est définie sur Q. Enfin, 
nous appliquons ces résultats à la détermination de l’exposant diophantien des groupes de 
Lie nilpotents rationnels.

© 2015 Published by Elsevier Masson SAS on behalf of Académie des sciences.

1. Introduction

In their breakthrough paper [11], Kleinbock and Margulis have solved a long-standing conjecture of Sprindzuk regarding 
metric Diophantine approximation on submanifolds of Rn , stating roughly speaking that non-degenerate submanifolds are 
extremal in the sense that almost every point on them has similar Diophantine properties to those of a random vector 
in Rn (i.e. it is not very well approximable, see below). Doing so, they used new methods coming from dynamics and based 
on quantitative non-divergence estimates (going back to early work of Margulis [13] and Dani [5]) for certain flows on the 
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non-compact homogeneous space SLn(R)/ SLn(Z). They suggested at the end of their paper to extend their results to the 
case of submanifolds of matrices Mm,n(R), a natural set-up for such questions. This was studied further in [12,4] and the 
problem appears in Gorodnik’s list of open problems [7].

In this note, we announce a set of results [2] that give a fairly complete picture of what happens in the matrix case as 
far as extremality is concerned. We identify a natural family of obstructions to extremality (Theorem 4.1) and show that 
they are in some sense the only obstructions to be considered (Theorem 4.3). Our results also extend to the matrix case the 
previous works of Kleinbock [8,9] regarding degenerate submanifolds of Rn . When the submanifold is algebraic and defined 
over Q, we obtain a formula for the exponent (Theorem 5.1).

In a second part of this note, we state new results regarding Diophantine approximation on Lie groups, in the spirit of 
our earlier work [1]. These results, which are applications of the theorems described in the first part of this note, concern 
the Diophantine exponent of nilpotent Lie groups and were our initial motivation for studying Diophantine approximation 
on submanifolds of matrices. The submanifolds to be considered here are images of certain word maps. Depending on 
the structure of the Lie algebra and its ideal of laws, these submanifolds can be degenerate. The relevant obstructions can 
nevertheless be identified and this leads to a formula for the Diophantine exponent of an arbitrary rational nilpotent Lie 
group (Theorem 7.2). A number of examples are also worked out explicitly.

2. Diophantine approximation on submanifolds of RRRn

A vector x ∈Rn is called extremal (or not very well approximable), if for every ε > 0 there is cε > 0 such that

|q · x + p| > cε

‖q‖n+ε

for all p ∈ Z and all q ∈ Zn \ {0}. Here q · x denotes the standard scalar product in Rn and ‖q‖ := √
q · q the standard 

Euclidean norm.
As is well known, almost every x ∈ Rn is extremal. An important question in metric Diophantine approximation is that 

of understanding the Diophantine properties of points x that are allowed to vary inside a fixed submanifold M of Rn . The 
submanifold M is called extremal if almost every point on M is extremal. A key result here is Theorem 2.1.

Theorem 2.1. (See Kleinbock–Margulis, [11].) Let U be an open connected subset of Rk and M := {f(x); x ∈ U }, where f : U → Rn is 
a real analytic map. Assume that M is not contained in a proper affine subspace of Rn, then M is extremal.

This answered a conjecture of Sprindzuk. The proof made use of homogeneous dynamics via the so-called Dani corre-
spondence between Diophantine exponents and the rate of escape to infinity of a diagonal flow in the space of lattices. We 
will also utilize these tools.

3. Diophantine approximation on submanifolds of matrices

It is natural to generalize this setting to that of submanifolds of matrices, namely submanifolds M ⊂ Mm,n(R). The 
Diophantine problem now becomes that of finding good integer approximations (by a vector p ∈ Zm) of the image M · q of 
an integer vector q ∈ Zn under the linear endomorphism M ∈ Mm,n(R). The case m = 1 corresponds to the above classical 
case (that of linear forms), while the dual case n = 1 corresponds to a simultaneous approximation.

It turns out that it is more natural to study the slightly more general problem of approximating 0 by the image M · q
of an integer vector q. One can pass from the old problem to the new one by embedding M inside Mm,m+n(R), via the 
embedding (Im denotes the m × m identity matrix):

Mm,n(R) → Mm,m+n(R)

M �→ (Im|M)

From now on, we will consider an arbitrary connected analytic submanifold M ⊂ Mm,m+n(R), given as M := {f(x);
x ∈ U }, where f : U → Mm,m+n(R) is a real analytic map from a connected open subset U in some Rk .

Definition 3.1 (Diophantine exponent). We say that a matrix M ∈ Mm+n,n(R) has Diophantine exponent β(M) ≥ 0, if β(M) is 
the supremum of all numbers β ≥ 0 for which there are infinitely many q ∈ Zm+n such that

‖M · q‖ <
1

‖q‖β
.
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4. The pigeonhole argument and the obstructions to extremality

By the pigeonhole principle (Dirichlet’s theorem), the lower bound β(M) ≥ m
n holds for all M . Indeed one compares the 

number of integer points in a box of side length T in Zm+n with the volume occupied by the image of this box under M
in Rm . Furthermore, instead of considering the full box of side length T in Zm+n , we could have restricted attention to the 
intersection of this box with a rational subspace W ≤Rm+n . The same argument would have then given the lower bound:

β(M) ≥ dim W

dim MW
− 1.

Of course it may happen, given M , that for some exceptional subspace W , dim W
dim MW − 1 > n

m = n+m
m − 1. And this may well 

also happen for all M ∈M, provided M lies in the following algebraic subvariety PW ,r of Mm,m+n(R)

PW ,r := {
M ∈ Mm,m+n(R);dim MW ≤ r

}
, (1)

where W is a fixed rational subspace of Rm+n and r a non-negative integer such that

dim W

r
− 1 >

n

m
. (2)

By convention, we agree that (2) is satisfied if r = 0. We will call the subvariety PW ,r of Mm,m+n(R) a pencil of endomor-
phisms with parameters W and r (defined also for arbitrary, non-rational, subspaces W ). Note that when m = 1, and r = 0, 
this notion reduces to the notion of linear subspace (the orthogonal of W ) of Rn+1 (or affine subspace of Rn). Hence asking 
that the submanifold M be not contained in any of those pencils PW ,r satisfying (2) is analogous in the matrix context to 
the condition of Theorem 2.1 that M be not contained in an affine subspace. The following result is close in spirit to that 
of [4], which gave a sufficient geometric condition for strong extremality. Our condition is strictly weaker, but only implies 
extremality:

Theorem 4.1 (Extremal submanifolds). Let M ⊂ Mm,m+n(R) be a connected real analytic submanifold. Assume that M is not con-
tained in any of the pencils PW ,r , where W , r range over all non-zero linear subspaces W ≤ Rm+n and non-negative integers r such 
that (2) holds. Then M is extremal, i.e. β(M) = n

m for Lebesgue almost every M ∈M.

4.1. Non-extremal submanifolds

A general result of Kleinbock [10] implies that the Diophantine exponent of a random point of M is always well defined. 
Namely there is β = β(M) ∈ [0, +∞] such that for Lebesgue almost every x ∈ U ,

β
(
f(x)

) = β(M).

Our first result is a general upper bound:

Theorem 4.2 (Upper bound on the exponent). Let M ⊂ Mm,m+n(R) be an analytic submanifold as defined above. Then

β(M) ≤ max

{
dim W

r
− 1;PW ,r ⊃ M

}
.

Of course Theorem 4.1 is an immediate consequence of this bound.
In [8,9] Kleinbock showed that the Diophantine exponent of an analytic submanifold of Rn depends only on its linear 

span. Our next result is a matrix analogue of this fact. Note that the Diophantine exponent of a matrix M depends only 
on its kernel ker M . As M varies in the submanifold M ⊂ Mm,m+n(R), consider the set of these kernels as a subset of the 
Grassmannian and take its linear span in the Plücker embedding. Denote by H(M) the matrices M whose kernel lies in 
this linear span. The set H(M) is an algebraic subvariety containing M and contained in every pencil containing M.

Theorem 4.3 (Optimality of the exponent). We have:

β(M) = β
(
H(M)

)
.

In particular β(M) = β(Zar(M)), where Zar(M) denotes the Zariski closure of M, and β(M) = β(Ω) for any open subset Ω ⊂M.

In particular M is extremal if and only if H(M) is extremal.
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5. Lower bounds on the exponent and rationality

Theorem 4.2 gives a general upper bound on the exponent. The pigeonhole argument described at the beginning of 
Section 4 yields a lower bound on β(M) in terms of the exponents of the rational obstructions in which M is contained, 
i.e. the pencils PW ,r with W a rational subspace of Rm+n . Hence, for a general analytic submanifold M ⊂ Mm,m+n(R), we 
only have the following general upper and lower bound:

max
PW ,r⊃M,W rational

dim W − r

r
≤ β(M) ≤ max

PW ,r⊃M

dim W − r

r
. (3)

For a submanifold M in general position, the upper and lower bounds are typically distinct. However, we will prove 
Theorem 5.1.

Theorem 5.1 (Subvarieties defined over Q). Assume that the Zariski-closure of the connected real analytic submanifold M ⊂
Mm,m+n(R) is defined over Q. Then the upper and lower bounds in (3) coincide, and hence are equal to β(M). In particular, 
β(M) ∈ Q.

The proof of Theorem 5.1 is based on the following combinatorial lemma, which is used here with G = Gal(C|Q) and 
will be used once again later on in the applications to nilpotent groups with G = GLk .

Let V be a finite dimensional vector space over a field and φ : Grass(V ) → N ∪ {0} a function on the Grassmannian, 
which is non-decreasing (for set inclusion) and submodular in the sense that for every two subspaces W1 and W2, we have

φ(W1 + W2) + φ(W1 ∩ W2) ≤ φ(W1) + φ(W2).

Lemma 5.2 (Submodularity lemma). Let G be a group acting by linear automorphisms on V . If φ is invariant under G, then the 
following minimum is attained on a G-invariant subspace

min
W ∈Grass(V )\{0}

φ(W )

dim W
.

6. Diophantine approximation on Lie groups

Inspired by works of Gamburd–Jakobson–Sarnak [6] and Bourgain–Gamburd [3] on the spectral gap problem for finitely 
generated subgroups of compact Lie groups, we defined in a previous article [1] the notion of Diophantine subgroup of 
an arbitrary Lie group G . The definition is as follows. Any finite symmetric subset S := {1, s±1

1 , . . . , s±1
k } in G generates a 

subgroup Γ ≤ G . If for all n ∈ N

inf
{

d(1, γ );γ ∈ Sn \ {1}} >
1

|Sn|β ,

then we say that (Γ, S) is β-Diophantine. And we say that Γ is Diophantine if it is β-Diophantine for some finite β . Here 
d(·, ·) denotes a fixed Riemannian metric on G and |Sn| is the cardinality of the n-th product set Sn := S · . . . · S . It is easily 
seen that being Diophantine does not depend on the choice of S or d(·, ·). And if G is nilpotent, this is also true of being 
β-Diophantine.

The connected Lie group G is said to be Diophantine on k letters if for almost every choice of k group elements s1, . . . , sk
chosen independently with respect to the Haar measure, the subgroup they generate is Diophantine. Finally, one says that 
G is Diophantine if it is Diophantine on k letters for every integer k.

While it is conjectured that all semisimple Lie groups are Diophantine, there are examples of non-Diophantine Lie groups. 
Indeed a construction was given in [1] for each integer k ∈N of a connected Lie group that is Diophantine on k letters, but 
not on k + 1 letters. Our examples are certain nilpotent Lie groups without a rational structure. We showed in that paper 
that the first examples arise in nilpotency class 6 and higher. In fact, every nilpotent Lie group G with nilpotency class at 
most 5, or derived length at most 2 (i.e. metabelian), is Diophantine.

7. Diophantine exponent of nilpotent Lie groups

If G is nilpotent, |Sn| grows like nαS , where αS is an integer given by the Bass–Guivarc’h formula. If the k elements 
si ’s forming S are chosen at random with respect to Haar measure, then αS is almost surely a fixed integer, which is a 
polynomial in k (see [1]).

Proposition 7.1 (Zero-one law). Let G be a simply connected nilpotent Lie group, and pick an integer k ≥ dim G/[G, G]. There is a 
number βk ∈ [0, +∞], such that if β > βk (resp. β < βk), then with respect to Haar measure almost every (resp. almost no) k-tuple in 
G generates a β-Diophantine subgroup.
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The proof of this is based on the ergodicity of the group of rational automorphisms of the free Lie algebra on k letters 
acting on (Lie(G))k . When the nilpotent Lie group G is rational (i.e. admits a Q-structure) the exponent βk can be computed 
explicitly using Theorem 5.1. We have the following.

Theorem 7.2 (A formula for the exponent). Assume that G is a rational simply connected nilpotent Lie group. There is a rational function 
F ∈ Q(X) with coefficients in Q such that for all large enough k,

βk = F (k).

In particular βk ∈Q. When k → ∞, βk converges to a limit β∞ with 0 < β∞ ≤ 1.

For example, if G is the (2m + 1)-dimensional Heisenberg group and k ≥ 2m, then βk = 1 − 1
k − 2

k2 . More generally, if G

is any 2-step nilpotent group not necessarily rational, then βk = (1 − 1
k ) 1

dim[G,G] − 2
k2 for k ≥ dim G/[G, G].

We also obtain closed formulas for βk in the case when G is the group of n × n unipotent upper-triangular matrices, e.g. 
if n = 4, and k ≥ 3, then βk = k3−k−3

k3+k2−k
. And in the case when G is an s-step free nilpotent group on m generators, e.g., if 

m = 2 and s = 3, then βk = k3−k−6
2(k3+k2−k)

. These formulas involve the dimensions of the maximal (for the natural partial order 
on Young diagrams) irreducible GLk-submodule of the free Lie algebra on k generators modulo the ideals of laws of G .

The reduction to Theorem 5.1 proceeds as follows. Since k is large, one can restrict attention to the last term G(s) in 
the central descending series. Given a Z-basis e1, . . . , em+n of the s-homogeneous part of the relatively free Lie algebra 
of G on k generators Fk,G (see [1]), the submanifold Mk,G of matrices to be considered is the image of (Lie(G))k under 
the (polynomial) map sending x ∈ (Lie(G))k to the (n + m) × m matrix whose columns are the ei(x). Here m = dim G(s) . 
Computing the exponent amounts to first identify the pencils PW ,r in which Mk,G sits and then compute the maximum 
of the ratios dim W

r . Using the submodularity lemma (Lemma 5.2) applied for the GLk action of linear substitutions, we may 
restrict attention to those pencils corresponding to subspaces W of Fk,G that are fully invariant ideals. Determining those 
ideals is usually possible, depending on G , thanks to the known representation theory of the free Lie algebra viewed as a 
GLk-module.
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