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Ginzburg–Landau model. Among all the Bravais lattices, we prove that the triangular lattice 
minimizes this renormalized energy.
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r é s u m é

Nous étudions les structures des vortex qui minimisent l’énergie renormalisée reliée au 
modèle de Ginzburg–Landau. Parmi tous les réseaux de Bravais, nous prouvons que le 
réseaux triangulaire minimise cette énergie renormalisée.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

For type-II superconductors, A. Abrikosov [1] predicted that the triangular lattice, now called “Abrikosov lattice”, would 
appear. There are some rigorous mathematical results related to this phenomenon, for example [2,3,5,9]. In [9], E. Sandier 
and S. Serfaty have proven that the vortices in minimizers of the Ginzburg–Landau energy, blown-up at a suitable scale, 
converges to minimizers of a “Coulombian Renormalized Energy”, and in the periodic case, the triangular lattice minimizes 
this renormalized energy. In this paper, we consider another renormalized energy for a periodic Ginzburg–Landau energy 
introduced in [4] and prove that the triangular lattice is the unique minimizer of this renormalized energy among all the 
Bravais lattices. One can refer to [6] for a similar work that describes di-block copolymers, and [8] for a related work on the 
determinants of Laplacians (see Corollary 1.b of [8]).

Let L = {Z�u ⊕Z�v | det(�u, �v) = 1}. For Λ ∈L, we define L = R
2/Λ, hence |L| = 1. We introduce the renormalized energy 

W which is defined in [4] over L as follows
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W (n,Λ) = lim
ε→0

(
πn logε + 1

2

∫
L\⋃n

i=1 B(pi ,ε)

|∇h|2 + h2
)

,

where {pi}n
i=1 are n points in L, and h satisfies⎧⎪⎨

⎪⎩
−�h + h = 2π

n∑
i=1

δpi in L

periodic boundary conditions.

(1)

In fact, this energy is a renormalized energy for the Ginzburg–Landau energy in the periodic setting. In the case of n = 1, 
i.e. among the Bravais lattices, we prove Theorem 1.1.

Theorem 1.1. The triangular lattice, modulo rotations, is the unique minimizer of W among all Bravais lattices.

In the proof of this theorem, we use a technique which has already been used in [9] to rewrite the renormalized energy 
W in an explicit formula related to Jacobi’s Theta Function, then by applying a result of H.L. Montgomery [7], we complete 
the proof.

2. Proof of Theorem 1.1

We follow the idea of [9] to rewrite the renormalized energy W in an explicit formula. When n = 1,

W (Λ) = lim
ε→0

(
π logε + 1

2

∫
L\B(0,ε)

|∇h|2 + h2
)

,

where h satisfies{ −�h + h = 2πδ0 in L
periodic boundary conditions.

(2)

Lemma 2.1. For any Λ ∈L, we have:

W (Λ) = π lim
x→0

(
h(x) + log |x|).

Proof. We have

π logε + 1

2

∫
L\B(0,ε)

|∇h|2 + h2 = π logε − 1

2

∫
∂ B(0,ε)

∂h

∂ν
· h,

where ν is the outer-pointing unit normal vector with respect to the corresponding boundary. In fact, h(x) = − log |x| + g(x), 
where g(x) is C1 near origin. So

∂h

∂ν

∣∣∣∣
∂ B(0,ε)

= −1

ε
+ ∂ g

∂ν

∣∣∣∣
∂ B(0,ε)

.

Therefore,

W (Λ) = lim
x→0

(
π log |x| + πh(x) + O

(|x| · log |x|)) = π lim
x→0

(
h(x) + log |x|). �

Next we prove an important lemma by following the same method in [9].

Lemma 2.2. There exists a constant C0 ∈R, such that for any Λ ∈L, we have

W (Λ) = C0 + π lim
x→0

(
ζΛ∗(x) −

∫
R2

2π

1 + 4π2|y|2+x
dy

)
,

where Λ∗ is the dual lattice of Λ, i.e. the set of vectors q such that q · p ∈ Z for every p ∈ Λ, and ζΛ∗ (x) = ∑
p∈Λ∗ 2π

2 2+x .

1+4π |p|
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Proof. We already have:

W (Λ) = π lim
x→0

(
h(x) + log |x|).

We introduce the Green function G(x) ∈ L2(R2), which is the solution of −�G + G = 2πδ0 in R2, and by the periodic 
boundary conditions, we can consider the function h(x) as a function in R2, i.e. the solution of

−�hΛ + hΛ = 2π
∑
p∈Λ

δp .

Then we can write:

hΛ(x) + log |x| = G(x) + log |x| + uΛ(x),

where uΛ(x) = hΛ(x) − G(x) and it depends on lattice Λ. It is well known that hΛ(x) + log |x|, G(x) + log |x|, uΛ(x) are C1

near 0. Note that G(x) + log |x| is independent of lattice Λ, so

W (Λ) = π lim
x→0

(
hΛ(x) + log |x|) = C0 + π · uΛ(0),

where C0 = limx→0 G(x) + log |x|.
Denote by ϕ(x) = (2π)−1e−|x|2/2 the Gaussian distribution in R2 and ϕn(x) = n2ϕ(nx) for any n ∈ N, so {ϕn(x)}n is an 

approximation of the Dirac mass. Since uΛ(x) is C1 near 0, we have:

uΛ(0) = lim
n→∞ w(n,Λ),

where

w(n,Λ) =
∫
R2

ϕn(x)uΛ(x)dx =
∫
R2

ϕ̂n(ξ)ûΛ(ξ)dξ.

We know that ϕ̂n(ξ) = e−2π2|ξ |2/n2
, and ûΛ(ξ) = ĥ(ξ) − Ĝ(ξ), where ĥ(ξ) = 2π

∑
p∈Λ∗ δp(ξ)

4π2|ξ |2+1
(2π comes from the fact that 

|L| = 1) and Ĝ(ξ) = 2π
4π2|ξ |2+1

. Hence

w(n,Λ) = 2π

( ∑
p∈Λ∗

e−2π2|p|2/n2

4π2|p|2 + 1
−

∫
R2

e−2π2|y|2/n2

4π2|y|2 + 1
dy

)
.

We claim that

lim
n→∞ w(n,Λ) = lim

x→0+ v(x,Λ),

where v(x, Λ) = 2π(
∑

p∈Λ∗ 1
4π2|p|2+x+1

− ∫
R2

1
4π2|y|2+x+1

dy), x > 0.

In fact, for any p ∈ Λ∗ , denote by K p the Voronoi cell centered at p, i.e. the region in R2 consisting of all the points 
closer to p than to any other point in Λ∗ . Note that K p is periodic due to the periodicity of lattice Λ∗ and |K p | = 1. Denote 
by 1K p the characteristic function with respect to K p , then we have

w(n,Λ) = 2π

∫
R2

∑
p∈Λ∗

1K p ·
(

e−2π2|p|2/n2

4π2|p|2 + 1
− e−2π2|y|2/n2

4π2|y|2 + 1

)
dy.

By applying the mean value theorem to e−2π2 |p|2/n2

4π2|p|2+1
− e−2π2 |y|2/n2

4π2|y|2+1
, we get a bound for the integrand function

∣∣∣∣ ∑
p∈Λ∗

1K p ·
(

e−2π2|p|2/n2

4π2|p|2 + 1
− e−2π2|y|2/n2

4π2|y|2 + 1

)∣∣∣∣ ≤ C
1

|y|3 + 1
,

where the constant C is independent of n. The function at the right hand side is an integrable function over the whole 
plane. Lebesgue’s dominated convergence theorem implies that

lim
n→∞ w(n,Λ) = 2π

∫
2

∑
p∈Λ∗

1K p ·
(

1

4π2|p|2 + 1
− 1

4π2|y|2 + 1

)
dy.
R
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Similarly, we have

lim
x→0+ v(x,Λ) = 2π

∫
R2

∑
p∈Λ∗

1K p ·
(

1

4π2|p|2 + 1
− 1

4π2|y|2 + 1

)
dy.

By combining the results above, we prove the lemma. �
Now we consider the term:

ζΛ∗(x) =
∑

p∈Λ∗

2π

4π2|p|2+x + 1
.

Let ζ 0
Λ∗ (x) = ∑

p∈Λ∗\{0} 2π
4π2|p|2+x , we can split ζΛ∗ (x) as follows,

ζΛ∗(x) = 2π + ζ 0
Λ∗(x) − 2π

∑
p∈Λ∗\{0}

1

4π2|p|2+x · (4π2|p|2+x + 1)

= 2π + ζ 0
Λ∗(x) − 2π

∑
p∈Λ∗\{0}

1

4π2|p|2 · (4π2|p|2 + 1)
+ o(1).

Note here o(1) means o(1) → 0 as x → 0 for any fixed Λ ∈L, but the convergence is not uniform w.r.t. Λ.
We will consider ζ 0

Λ∗ (x) − 2π
∑

p∈Λ∗\{0} 1
4π2|p|2·(4π2|p|2+1)

together.

If 4π2|p|2 > 1, we can have a series expansion of the second term. We can do this at least in a neighborhood of the 

triangular lattice, because the length of the edge is 
√

2/
√

3 > 1.

∑
p∈Λ∗\{0}

1

4π2|p|2 · (4π2|p|2 + 1)
=

∑
p∈Λ∗\{0}

1

(4π2|p|2)2 · (1 + (4π2|p|2)−1)
=

∑
p∈Λ∗\{0}

∞∑
n=2

(−1)n

(4π2|p|2)n
.

Since the summation 
∑

p∈Λ∗\{0}
∑∞

n=2
(−1)n

(4π2|p|2)n converges absolutely, we can change the order of the summation.

∑
p∈Λ∗\{0}

∞∑
n=2

(−1)n

(4π2|p|2)n
=

∞∑
n=2

∑
p∈Λ∗\{0}

(−1)n

(4π2|p|2)n
.

We write 
∑∞

n=2
∑

p∈Λ∗\{0}
(−1)n

(4π2|p|2)n = ∑∞
n=2(−1)n gn,Λ∗ for convenience, where gn,Λ∗ = ∑

p∈Λ∗\{0} 1
(4π2|p|2)n .

Let s = 1 + x
2 , x > 0, then by using a result in [7], we have:

1

2π
· 4π2 · ζ 0

Λ∗(x) · 2s · Γ (s) · (2π)−s = 1

s − 1
− 1

s
+

+∞∫
1

(
θΛ∗(α) − 1

)(
αs + α1−s)dα

α
,

where θΛ∗(α) = ∑
p∈Λ∗ e−πα|p|2 .

Similarly, we have

(
4π2)n · gn,Λ∗(x) · 2n · Γ (n) · (2π)−n = 1

n − 1
− 1

n
+

+∞∫
1

(
θΛ∗(α) − 1

)(
αn + α1−n)dα

α
.

Therefore, we have:

ζΛ∗(x) = 2π + ζ 0
Λ∗(x) − 2π

∑
p∈Λ∗\{0}

1

4π2|p|2 · (4π2|p|2 + 1)
+ o(1)

= 2π + π s−1

2Γ (s)

(
1

s − 1
− 1

s

)
+

∞∑
n=2

2π
(−1)n−1

(4π)nΓ (n)

(
1

n − 1
− 1

n

)

+ 2π

+∞∫
1

(
θΛ∗(α) − 1

) · π s−1

4πΓ (s)
· (αs + α1−s)dα

α

+
∞∑

n=2

2π

+∞∫ (
θΛ∗(α) − 1

) (−1)n−1

(4π)nΓ (n)

(
αn + α1−n)dα

α
+ o(1)
1
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= 2π + f (x) + c0 + 2π

+∞∫
1

(
θΛ∗(α) − 1

) · I(x,α)
dα

α
+ o(1),

where f (x) = π s−1

2Γ (s) (
1

s−1 − 1
s ), c0 = ∑∞

n=2 2π (−1)n−1

(4π)nΓ (n)
( 1

n−1 − 1
n ) and I(x, α) = π s−1

4πΓ (s) · (αs + α1−s) + ∑∞
n=2

(−1)n−1

(4π)nΓ (n)
(αn +

α1−n).
For any α fixed, we have

I(x,α)

=
(

π s−1

4πΓ (s)
· αs +

∞∑
n=2

(−1)n−1

(4π)nΓ (n)
αn

)
+

(
π s−1

4πΓ (s)
α1−s +

∞∑
n=2

(−1)n−1

(4π)nΓ (n)
α1−n

)

= α

4π

(
(πα)s−1

Γ (s)
+ e− α

4π − 1

)
+ 1

4π

(
π s−1

Γ (s)
α1−s + e− 1

4πα − 1

)
.

Γ (s) is convex in [1, 2], and Γ (1) = Γ (2) = 1, so for s ∈ [1, 2], Γ (s) ≤ 1, while (πα)s−1 ≥ 1, for α ≥ 1, s ∈ [1, 2]. Hence

(πα)s−1

Γ (s)
− 1 ≥ 0.

Similarly, we have π s−1

Γ (s) α
1−s ≥ α1−s , and the fact that 1 − e− 1

4πα < 1
4πα implies that π s−1

Γ (s) α
1−s + e− 1

4πα − 1 > 0 for α ≥ 1, 
s ∈ [1, 2].

By combining the results above, we have I(x, α) > 0 for α ≥ 1, s ∈ [1, 2].
Next we will prove that

ζΛ∗(x) = 2π + f (x) + c0 + 2π

+∞∫
1

(
θΛ∗(α) − 1

)
I(x,α)

dα

α
+ o(1)

is true not just for lattices in the neighborhood of a triangular lattice, but for all Bravais lattices with area 1. We claim that 
both

f1(Λ) = ζ 0
Λ∗(x) − 2π

∑
p∈Λ∗\{0}

1

4π2|p|2 · (4π2|p|2 + 1)

and

f2(Λ) = f (x) + c0 + 2π

+∞∫
1

(
θΛ∗(α) − 1

)
I(x,α)

dα

α

are analytic w.r.t. lattices. It means that if we denote by �u = (a, 0), a > 0, �v = (b, c) = (b, 1/a) the vectors that generate 
lattice Λ∗ , the two functions are analytic w.r.t. �u, �v , i.e. a, b. If p = m�u + n�v = (ma + nb, nc), then |p|2 = (ma + nb)2 + n2c2. 
For 

∑
p∈Λ∗\{0} 1

4π2|p|2·(4π2|p|2+1)
, at (a0, b0, c0), a0 > 0, we have

∑
p∈Λ∗\{0}

1

4π2|p|2 · (4π2|p|2 + 1)

=
∑

(m,n)∈Z2\{0}

1

4π2[(ma + nb)2 + n2c2] · [4π2((ma + nb)2 + n2c2) + 1]

=
∑

(m,n)∈Z2\{0}

1

4π2[(ma0 + nb0)2 + n2c2
0 + R(a − a0,b − b0, c − c0)]

· 1

4π2[(ma0 + nb0)2 + n2c2
0 + R(a − a0,b − b0, c − c0)] + 1

=
∑

(m,n)∈Z2\{0}

1

[4π2(m2a2
0 + 2a0b0mn + n2(b2

0 + c2
0))] · [4π2(m2a2

0 + 2a0b0mn + n2(b2
0 + c2

0)) + 1]

· 1

1 + R(a−a0,b−b0,c−c0)

m2a2+2a b mn+n2(b2+c2)

· 1

1 + 4π2 R(a−a0,b−b0,c−c0)
2 2 2 2 2 2

.

0 0 0 0 0 4π (m a0+2a0b0mn+n (b0+c0))+1
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We obtain a series expansion of the formula above by expanding the function 1
1+x at 0 and rearranging the terms since that 

the coefficients converge absolutely. Take a function composition with c = 1/a, we obtain that∑
p∈Λ∗\{0}

1

4π2|p|2 · (4π2|p|2 + 1)

is an analytic w.r.t. lattice.
Similarly, the function ζ 0

Λ∗ (x) is an analytic w.r.t. lattice.
For the function f2(Λ), f (x) + c0 is independent of the lattice, so we only need to prove that 2π

∫ +∞
1 (θΛ∗ (α) −

1)I(x, α) dα
α is an analytic w.r.t. lattice. The series is a positive series, it converges absolutely. The function θΛ∗ (α) − 1 is 

a positive series and converges absolutely for any α, and each term in the series is analytic, so we rewrite the function 
2π

∫ +∞
1 (θΛ∗ (α) − 1)I(x, α) dα

α in the form of a series w.r.t. lattice. Therefore, the function f (x) + c0 + 2π
∫ +∞

1 (θΛ∗ (α) −
1)I(x, α) dα

α is an analytic w.r.t. lattice.
Now we know that the functions f1(Λ) and f2(Λ) are analytic, and f1 = f2 in the neighborhood of a triangular lattice, 

so f1 ≡ f2 for all lattices with fixed area 1.
We use a result due to Montgomery.

Theorem 2.1. (See [7].) For any α > 0,

θ f (α) ≥ θh(α),

where f (u) = f (u1, u2) = au2
1 + bu1u2 + cu2

2 is a positive definite binary quadratic form with real coefficient and discriminant 
b2 − 4ac = −1, and h(u) = 1√

3
(u2

1 + u1u2 + u2
2). If there is an α > 0 such that θ f (α) = θh(α), then f and h are equivalent forms 

and θ f (α) ≡ θh(α).

From the theorem above, we know that the minimum of the Jacobi Theta function θ over L (recall that L is the set 
of all Bravais lattices with area 1) is uniquely achieved by Λ∗

0, Λ0 =
√

2√
3
(Z(1, 0) ⊕ Z(1/2, 

√
3/2)). Denote by Λ a Bravais 

lattice, then apply Lebesgue’s dominated convergence theorem, we have:

W (Λ) − W (Λ0) = π lim
x→0

(
ζΛ∗(x) − ζΛ∗

0
(x)

) = π lim
x→0

2π

+∞∫
1

(θΛ∗ − θΛ∗
0
)I(x,α)

dα

α

= 2π2

+∞∫
1

(θΛ∗ − θΛ∗
0
)I(0,α)

dα

α
.

By using Theorem 1 of [7] and the fact that I(0, α) > 0, we have W (Λ) ≥ W (Λ0) for all lattices Λ ∈ L, and the equality 
holds if and only if Λ = Λ0. Therefore the triangular lattice is the unique minimizer of energy W (Λ).
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