Partial differential equations

On the minimizer of a renormalized energy related to the Ginzburg-Landau model

Sur la minimisation de l'énergie renormalisée reliée au modèle de Ginzburg-Landau

Peng Zhang
Département de Mathématiques, Université Paris-Est (Créteil-Val-de-Marne), 61, avenue du Général-de-Gaulle, 94010 Céteil cedex, France

A R T I CLE IN F O

Article history:

Received 18 February 2014
Accepted after revision 15 January 2015
Available online 28 January 2015
Presented by Haïm Brézis

Abstract

We study the configuration of vortices that minimize a renormalized energy related to the Ginzburg-Landau model. Among all the Bravais lattices, we prove that the triangular lattice minimizes this renormalized energy.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

R É S U M É

Nous étudions les structures des vortex qui minimisent l'énergie renormalisée reliée au modèle de Ginzburg-Landau. Parmi tous les réseaux de Bravais, nous prouvons que le réseaux triangulaire minimise cette énergie renormalisée.
© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

For type-II superconductors, A. Abrikosov [1] predicted that the triangular lattice, now called "Abrikosov lattice", would appear. There are some rigorous mathematical results related to this phenomenon, for example [2,3,5,9]. In [9], E. Sandier and S. Serfaty have proven that the vortices in minimizers of the Ginzburg-Landau energy, blown-up at a suitable scale, converges to minimizers of a "Coulombian Renormalized Energy", and in the periodic case, the triangular lattice minimizes this renormalized energy. In this paper, we consider another renormalized energy for a periodic Ginzburg-Landau energy introduced in [4] and prove that the triangular lattice is the unique minimizer of this renormalized energy among all the Bravais lattices. One can refer to [6] for a similar work that describes di-block copolymers, and [8] for a related work on the determinants of Laplacians (see Corollary 1.b of [8]).

Let $\mathcal{L}=\{\mathbb{Z} \vec{u} \oplus \mathbb{Z} \vec{v} \mid \operatorname{det}(\vec{u}, \vec{v})=1\}$. For $\Lambda \in \mathcal{L}$, we define $L=\mathbb{R}^{2} / \Lambda$, hence $|L|=1$. We introduce the renormalized energy W which is defined in [4] over \mathcal{L} as follows

[^0]$$
W(n, \Lambda)=\lim _{\varepsilon \rightarrow 0}\left(\pi n \log \varepsilon+\frac{1}{2} \int_{L \backslash \bigcup_{i=1}^{n} B\left(p_{i}, \varepsilon\right)}|\nabla h|^{2}+h^{2}\right),
$$
where $\left\{p_{i}\right\}_{i=1}^{n}$ are n points in L, and h satisfies
\[

\left\{$$
\begin{array}{l}
-\Delta h+h=2 \pi \sum_{i=1}^{n} \delta_{p_{i}} \quad \text { in } L \tag{1}\\
\text { periodic boundary conditions. }
\end{array}
$$\right.
\]

In fact, this energy is a renormalized energy for the Ginzburg-Landau energy in the periodic setting. In the case of $n=1$, i.e. among the Bravais lattices, we prove Theorem 1.1.

Theorem 1.1. The triangular lattice, modulo rotations, is the unique minimizer of W among all Bravais lattices.

In the proof of this theorem, we use a technique which has already been used in [9] to rewrite the renormalized energy W in an explicit formula related to Jacobi's Theta Function, then by applying a result of H.L. Montgomery [7], we complete the proof.

2. Proof of Theorem 1.1

We follow the idea of [9] to rewrite the renormalized energy W in an explicit formula. When $n=1$,

$$
W(\Lambda)=\lim _{\varepsilon \rightarrow 0}\left(\pi \log \varepsilon+\frac{1}{2} \int_{L \backslash B(0, \varepsilon)}|\nabla h|^{2}+h^{2}\right),
$$

where h satisfies

$$
\left\{\begin{array}{l}
-\Delta h+h=2 \pi \delta_{0} \text { in } L \tag{2}\\
\text { periodic boundary conditions. }
\end{array}\right.
$$

Lemma 2.1. For any $\Lambda \in \mathcal{L}$, we have:

$$
W(\Lambda)=\pi \lim _{x \rightarrow 0}(h(x)+\log |x|)
$$

Proof. We have

$$
\pi \log \varepsilon+\frac{1}{2} \int_{L \backslash B(0, \varepsilon)}|\nabla h|^{2}+h^{2}=\pi \log \varepsilon-\frac{1}{2} \int_{\partial B(0, \varepsilon)} \frac{\partial h}{\partial v} \cdot h,
$$

where v is the outer-pointing unit normal vector with respect to the corresponding boundary. In fact, $h(x)=-\log |x|+g(x)$, where $g(x)$ is C^{1} near origin. So

$$
\left.\frac{\partial h}{\partial v}\right|_{\partial B(0, \varepsilon)}=-\frac{1}{\varepsilon}+\left.\frac{\partial g}{\partial v}\right|_{\partial B(0, \varepsilon)}
$$

Therefore,

$$
W(\Lambda)=\lim _{x \rightarrow 0}(\pi \log |x|+\pi h(x)+O(|x| \cdot \log |x|))=\pi \lim _{x \rightarrow 0}(h(x)+\log |x|) .
$$

Next we prove an important lemma by following the same method in [9].

Lemma 2.2. There exists a constant $C_{0} \in \mathbb{R}$, such that for any $\Lambda \in \mathcal{L}$, we have

$$
W(\Lambda)=C_{0}+\pi \lim _{x \rightarrow 0}\left(\zeta_{\Lambda^{*}}(x)-\int_{\mathbb{R}^{2}} \frac{2 \pi}{1+4 \pi^{2}|y|^{2+x}} \mathrm{~d} y\right)
$$

where Λ^{*} is the dual lattice of Λ, i.e. the set of vectors q such that $q \cdot p \in \mathbb{Z}$ for every $p \in \Lambda$, and $\zeta_{\Lambda^{*}}(x)=\sum_{p \in \Lambda^{*}} \frac{2 \pi}{1+4 \pi^{2}|p|^{2+x}}$.

Proof. We already have:

$$
W(\Lambda)=\pi \lim _{x \rightarrow 0}(h(x)+\log |x|)
$$

We introduce the Green function $G(x) \in L^{2}\left(\mathbb{R}^{2}\right)$, which is the solution of $-\Delta G+G=2 \pi \delta_{0}$ in \mathbb{R}^{2}, and by the periodic boundary conditions, we can consider the function $h(x)$ as a function in \mathbb{R}^{2}, i.e. the solution of

$$
-\Delta h_{\Lambda}+h_{\Lambda}=2 \pi \sum_{p \in \Lambda} \delta_{p}
$$

Then we can write:

$$
h_{\Lambda}(x)+\log |x|=G(x)+\log |x|+u_{\Lambda}(x),
$$

where $u_{\Lambda}(x)=h_{\Lambda}(x)-G(x)$ and it depends on lattice Λ. It is well known that $h_{\Lambda}(x)+\log |x|, G(x)+\log |x|, u_{\Lambda}(x)$ are C^{1} near 0 . Note that $G(x)+\log |x|$ is independent of lattice Λ, so

$$
W(\Lambda)=\pi \lim _{x \rightarrow 0}\left(h_{\Lambda}(x)+\log |x|\right)=C_{0}+\pi \cdot u_{\Lambda}(0)
$$

where $C_{0}=\lim _{x \rightarrow 0} G(x)+\log |x|$.
Denote by $\varphi(x)=(2 \pi)^{-1} \mathrm{e}^{-|x|^{2} / 2}$ the Gaussian distribution in \mathbb{R}^{2} and $\varphi_{n}(x)=n^{2} \varphi(n x)$ for any $n \in \mathbb{N}$, so $\left\{\varphi_{n}(x)\right\}_{n}$ is an approximation of the Dirac mass. Since $u_{\Lambda}(x)$ is C^{1} near 0 , we have:

$$
u_{\Lambda}(0)=\lim _{n \rightarrow \infty} w(n, \Lambda)
$$

where

$$
w(n, \Lambda)=\int_{\mathbb{R}^{2}} \varphi_{n}(x) u_{\Lambda}(x) \mathrm{d} x=\int_{\mathbb{R}^{2}} \hat{\varphi}_{n}(\xi) \hat{u}_{\Lambda}(\xi) \mathrm{d} \xi
$$

We know that $\hat{\varphi}_{n}(\xi)=\mathrm{e}^{-2 \pi^{2}|\xi|^{2} / n^{2}}$, and $\hat{u}_{\Lambda}(\xi)=\hat{h}(\xi)-\hat{G}(\xi)$, where $\hat{h}(\xi)=\frac{2 \pi \sum_{p \in \Lambda^{*}} \delta_{p}(\xi)}{4 \pi^{2}|\xi|^{2}+1}(2 \pi$ comes from the fact that $|L|=1)$ and $\hat{G}(\xi)=\frac{2 \pi}{4 \pi^{2}|\xi|^{2}+1}$. Hence

$$
w(n, \Lambda)=2 \pi\left(\sum_{p \in \Lambda^{*}} \frac{\mathrm{e}^{-2 \pi^{2}|p|^{2} / n^{2}}}{4 \pi^{2}|p|^{2}+1}-\int_{\mathbb{R}^{2}} \frac{\mathrm{e}^{-2 \pi^{2}|y|^{2} / n^{2}}}{4 \pi^{2}|y|^{2}+1} \mathrm{~d} y\right)
$$

We claim that

$$
\lim _{n \rightarrow \infty} w(n, \Lambda)=\lim _{x \rightarrow 0^{+}} v(x, \Lambda)
$$

where $v(x, \Lambda)=2 \pi\left(\sum_{p \in \Lambda^{*}} \frac{1}{4 \pi^{2}|p|^{2+x}+1}-\int_{\mathbb{R}^{2}} \frac{1}{4 \pi^{2}|y|^{2+x}+1} \mathrm{~d} y\right), x>0$.
In fact, for any $p \in \Lambda^{*}$, denote by K_{p} the Voronoi cell centered at p, i.e. the region in \mathbb{R}^{2} consisting of all the points closer to p than to any other point in Λ^{*}. Note that K_{p} is periodic due to the periodicity of lattice Λ^{*} and $\left|K_{p}\right|=1$. Denote by $\mathbf{1}_{K_{p}}$ the characteristic function with respect to K_{p}, then we have

$$
w(n, \Lambda)=2 \pi \int_{\mathbb{R}^{2}} \sum_{p \in \Lambda^{*}} \mathbf{1}_{K_{p}} \cdot\left(\frac{\mathrm{e}^{-2 \pi^{2}|p|^{2} / n^{2}}}{4 \pi^{2}|p|^{2}+1}-\frac{\mathrm{e}^{-2 \pi^{2}|y|^{2} / n^{2}}}{4 \pi^{2}|y|^{2}+1}\right) \mathrm{d} y
$$

By applying the mean value theorem to $\frac{\mathrm{e}^{-2 \pi^{2}|p|^{2} / n^{2}}}{4 \pi^{2}|p|^{2}+1}-\frac{\mathrm{e}^{-2 \pi^{2}|y|^{2} / n^{2}}}{4 \pi^{2}|y|^{2}+1}$, we get a bound for the integrand function

$$
\left|\sum_{p \in \Lambda^{*}} \mathbf{1}_{K_{p}} \cdot\left(\frac{\mathrm{e}^{-2 \pi^{2}|p|^{2} / n^{2}}}{4 \pi^{2}|p|^{2}+1}-\frac{\mathrm{e}^{-2 \pi^{2}|y|^{2} / n^{2}}}{4 \pi^{2}|y|^{2}+1}\right)\right| \leq C \frac{1}{|y|^{3}+1}
$$

where the constant C is independent of n. The function at the right hand side is an integrable function over the whole plane. Lebesgue's dominated convergence theorem implies that

$$
\lim _{n \rightarrow \infty} w(n, \Lambda)=2 \pi \int_{\mathbb{R}^{2}} \sum_{p \in \Lambda^{*}} \mathbf{1}_{K_{p}} \cdot\left(\frac{1}{4 \pi^{2}|p|^{2}+1}-\frac{1}{4 \pi^{2}|y|^{2}+1}\right) \mathrm{d} y
$$

Similarly, we have

$$
\lim _{x \rightarrow 0^{+}} v(x, \Lambda)=2 \pi \int_{\mathbb{R}^{2}} \sum_{p \in \Lambda^{*}} \mathbf{1}_{K_{p}} \cdot\left(\frac{1}{4 \pi^{2}|p|^{2}+1}-\frac{1}{4 \pi^{2}|y|^{2}+1}\right) \mathrm{d} y
$$

By combining the results above, we prove the lemma.
Now we consider the term:

$$
\zeta_{\Lambda^{*}}(x)=\sum_{p \in \Lambda^{*}} \frac{2 \pi}{4 \pi^{2}|p|^{2+x}+1}
$$

Let $\zeta_{\Lambda^{*}}^{0}(x)=\sum_{p \in \Lambda^{*} \backslash\{0\}} \frac{2 \pi}{4 \pi^{2}|p|^{2+x}}$, we can split $\zeta_{\Lambda^{*}}(x)$ as follows,

$$
\begin{aligned}
\zeta_{\Lambda^{*}}(x) & =2 \pi+\zeta_{\Lambda^{*}}^{0}(x)-2 \pi \sum_{p \in \Lambda^{*} \backslash\{0\}} \frac{1}{4 \pi^{2}|p|^{2+x} \cdot\left(4 \pi^{2}|p|^{2+x}+1\right)} \\
& =2 \pi+\zeta_{\Lambda^{*}}^{0}(x)-2 \pi \sum_{p \in \Lambda^{*} \backslash\{0\}} \frac{1}{4 \pi^{2}|p|^{2} \cdot\left(4 \pi^{2}|p|^{2}+1\right)}+o(1)
\end{aligned}
$$

Note here $o(1)$ means $o(1) \rightarrow 0$ as $x \rightarrow 0$ for any fixed $\Lambda \in \mathcal{L}$, but the convergence is not uniform w.r.t. Λ.
We will consider $\zeta_{\Lambda^{*}}^{0}(x)-2 \pi \sum_{p \in \Lambda^{*} \backslash\{0\}} \frac{1}{4 \pi^{2}|p|^{2} \cdot\left(4 \pi^{2}|p|^{2}+1\right)}$ together.
If $4 \pi^{2}|p|^{2}>1$, we can have a series expansion of the second term. We can do this at least in a neighborhood of the triangular lattice, because the length of the edge is $\sqrt{2 / \sqrt{3}}>1$.

$$
\sum_{p \in \Lambda^{*} \backslash\{0\}} \frac{1}{4 \pi^{2}|p|^{2} \cdot\left(4 \pi^{2}|p|^{2}+1\right)}=\sum_{p \in \Lambda^{*} \backslash\{0\}} \frac{1}{\left(4 \pi^{2}|p|^{2}\right)^{2} \cdot\left(1+\left(4 \pi^{2}|p|^{2}\right)^{-1}\right)}=\sum_{p \in \Lambda^{*} \backslash\{0\}} \sum_{n=2}^{\infty} \frac{(-1)^{n}}{\left(4 \pi^{2}|p|^{2}\right)^{n}}
$$

Since the summation $\sum_{p \in \Lambda^{*} \backslash\{0\}} \sum_{n=2}^{\infty} \frac{(-1)^{n}}{\left(4 \pi^{2}|p|^{2}\right)^{n}}$ converges absolutely, we can change the order of the summation.

$$
\sum_{p \in \Lambda^{*} \backslash\{0\}} \sum_{n=2}^{\infty} \frac{(-1)^{n}}{\left(4 \pi^{2}|p|^{2}\right)^{n}}=\sum_{n=2}^{\infty} \sum_{p \in \Lambda^{*} \backslash\{0\}} \frac{(-1)^{n}}{\left(4 \pi^{2}|p|^{2}\right)^{n}}
$$

We write $\sum_{n=2}^{\infty} \sum_{p \in \Lambda^{*} \backslash\{0\}} \frac{(-1)^{n}}{\left(4 \pi^{2}|p|^{2}\right)^{n}}=\sum_{n=2}^{\infty}(-1)^{n} g_{n, \Lambda^{*}}$ for convenience, where $g_{n, \Lambda^{*}}=\sum_{p \in \Lambda^{*} \backslash\{0\}} \frac{1}{\left(4 \pi^{2}|p|^{2}\right)^{n}}$.
Let $s=1+\frac{\chi}{2}, x>0$, then by using a result in [7], we have:

$$
\frac{1}{2 \pi} \cdot 4 \pi^{2} \cdot \zeta_{\Lambda^{*}}^{0}(x) \cdot 2^{s} \cdot \Gamma(s) \cdot(2 \pi)^{-s}=\frac{1}{s-1}-\frac{1}{s}+\int_{1}^{+\infty}\left(\theta_{\Lambda^{*}}(\alpha)-1\right)\left(\alpha^{s}+\alpha^{1-s}\right) \frac{\mathrm{d} \alpha}{\alpha}
$$

where $\theta_{\Lambda^{*}}(\alpha)=\sum_{p \in \Lambda^{*}} \mathrm{e}^{-\pi \alpha|p|^{2}}$.
Similarly, we have

$$
\left(4 \pi^{2}\right)^{n} \cdot g_{n, \Lambda^{*}}(x) \cdot 2^{n} \cdot \Gamma(n) \cdot(2 \pi)^{-n}=\frac{1}{n-1}-\frac{1}{n}+\int_{1}^{+\infty}\left(\theta_{\Lambda^{*}}(\alpha)-1\right)\left(\alpha^{n}+\alpha^{1-n}\right) \frac{\mathrm{d} \alpha}{\alpha} .
$$

Therefore, we have:

$$
\begin{aligned}
\zeta_{\Lambda^{*}}(x)= & 2 \pi+\zeta_{\Lambda^{*}}^{0}(x)-2 \pi \sum_{p \in \Lambda^{*} \backslash\{0\}} \frac{1}{4 \pi^{2}|p|^{2} \cdot\left(4 \pi^{2}|p|^{2}+1\right)}+o(1) \\
= & 2 \pi+\frac{\pi^{s-1}}{2 \Gamma(s)}\left(\frac{1}{s-1}-\frac{1}{s}\right)+\sum_{n=2}^{\infty} 2 \pi \frac{(-1)^{n-1}}{(4 \pi)^{n} \Gamma(n)}\left(\frac{1}{n-1}-\frac{1}{n}\right) \\
& +2 \pi \int_{1}^{+\infty}\left(\theta_{\Lambda^{*}}(\alpha)-1\right) \cdot \frac{\pi^{s-1}}{4 \pi \Gamma(s)} \cdot\left(\alpha^{s}+\alpha^{1-s}\right) \frac{\mathrm{d} \alpha}{\alpha} \\
& +\sum_{n=2}^{\infty} 2 \pi \int_{1}^{+\infty}\left(\theta_{\Lambda^{*}}(\alpha)-1\right) \frac{(-1)^{n-1}}{(4 \pi)^{n} \Gamma(n)}\left(\alpha^{n}+\alpha^{1-n}\right) \frac{\mathrm{d} \alpha}{\alpha}+o(1)
\end{aligned}
$$

$$
=2 \pi+f(x)+c_{0}+2 \pi \int_{1}^{+\infty}\left(\theta_{\Lambda^{*}}(\alpha)-1\right) \cdot I(x, \alpha) \frac{\mathrm{d} \alpha}{\alpha}+o(1)
$$

where $f(x)=\frac{\pi^{s-1}}{2 \Gamma(s)}\left(\frac{1}{s-1}-\frac{1}{s}\right), c_{0}=\sum_{n=2}^{\infty} 2 \pi \frac{(-1)^{n-1}}{(4 \pi)^{n} \Gamma(n)}\left(\frac{1}{n-1}-\frac{1}{n}\right)$ and $I(x, \alpha)=\frac{\pi^{s-1}}{4 \pi \Gamma(s)} \cdot\left(\alpha^{s}+\alpha^{1-s}\right)+\sum_{n=2}^{\infty} \frac{(-1)^{n-1}}{(4 \pi)^{n} \Gamma(n)}\left(\alpha^{n}+\right.$ α^{1-n}).

For any α fixed, we have

$$
\begin{aligned}
& I(x, \alpha) \\
& \quad=\left(\frac{\pi^{s-1}}{4 \pi \Gamma(s)} \cdot \alpha^{s}+\sum_{n=2}^{\infty} \frac{(-1)^{n-1}}{(4 \pi)^{n} \Gamma(n)} \alpha^{n}\right)+\left(\frac{\pi^{s-1}}{4 \pi \Gamma(s)} \alpha^{1-s}+\sum_{n=2}^{\infty} \frac{(-1)^{n-1}}{(4 \pi)^{n} \Gamma(n)} \alpha^{1-n}\right) \\
& \quad=\frac{\alpha}{4 \pi}\left(\frac{(\pi \alpha)^{s-1}}{\Gamma(s)}+\mathrm{e}^{-\frac{\alpha}{4 \pi}}-1\right)+\frac{1}{4 \pi}\left(\frac{\pi^{s-1}}{\Gamma(s)} \alpha^{1-s}+\mathrm{e}^{-\frac{1}{4 \pi \alpha}}-1\right) .
\end{aligned}
$$

$\Gamma(s)$ is convex in [1, 2], and $\Gamma(1)=\Gamma(2)=1$, so for $s \in[1,2], \Gamma(s) \leq 1$, while $(\pi \alpha)^{s-1} \geq 1$, for $\alpha \geq 1, s \in[1,2]$. Hence

$$
\frac{(\pi \alpha)^{s-1}}{\Gamma(s)}-1 \geq 0
$$

Similarly, we have $\frac{\pi^{s-1}}{\Gamma(s)} \alpha^{1-s} \geq \alpha^{1-s}$, and the fact that $1-\mathrm{e}^{-\frac{1}{4 \pi \alpha}}<\frac{1}{4 \pi \alpha}$ implies that $\frac{\pi^{s-1}}{\Gamma(s)} \alpha^{1-s}+\mathrm{e}^{-\frac{1}{4 \pi \alpha}}-1>0$ for $\alpha \geq 1$, $s \in[1,2]$.

By combining the results above, we have $I(x, \alpha)>0$ for $\alpha \geq 1, s \in[1,2]$.
Next we will prove that

$$
\zeta_{\Lambda^{*}}(x)=2 \pi+f(x)+c_{0}+2 \pi \int_{1}^{+\infty}\left(\theta_{\Lambda^{*}}(\alpha)-1\right) I(x, \alpha) \frac{\mathrm{d} \alpha}{\alpha}+o(1)
$$

is true not just for lattices in the neighborhood of a triangular lattice, but for all Bravais lattices with area 1 . We claim that both

$$
f_{1}(\Lambda)=\zeta_{\Lambda^{*}}^{0}(x)-2 \pi \sum_{p \in \Lambda^{*} \backslash\{0\}} \frac{1}{4 \pi^{2}|p|^{2} \cdot\left(4 \pi^{2}|p|^{2}+1\right)}
$$

and

$$
f_{2}(\Lambda)=f(x)+c_{0}+2 \pi \int_{1}^{+\infty}\left(\theta_{\Lambda^{*}}(\alpha)-1\right) I(x, \alpha) \frac{\mathrm{d} \alpha}{\alpha}
$$

are analytic w.r.t. lattices. It means that if we denote by $\vec{u}=(a, 0), a>0, \vec{v}=(b, c)=(b, 1 / a)$ the vectors that generate lattice Λ^{*}, the two functions are analytic w.r.t. \vec{u}, \vec{v}, i.e. a, b. If $p=m \vec{u}+n \vec{v}=(m a+n b, n c)$, then $|p|^{2}=(m a+n b)^{2}+n^{2} c^{2}$. For $\sum_{p \in \Lambda^{*} \backslash\{0\}} \frac{1}{4 \pi^{2}|p|^{2} \cdot\left(4 \pi^{2}|p|^{2}+1\right)}$, at $\left(a_{0}, b_{0}, c_{0}\right), a_{0}>0$, we have

$$
\begin{aligned}
& \sum_{p \in \Lambda^{*} \backslash\{0\}} \frac{1}{4 \pi^{2}|p|^{2} \cdot\left(4 \pi^{2}|p|^{2}+1\right)} \\
= & \sum_{(m, n) \in \mathbb{Z}^{2} \backslash\{0\}} \frac{1}{4 \pi^{2}\left[(m a+n b)^{2}+n^{2} c^{2}\right] \cdot\left[4 \pi^{2}\left((m a+n b)^{2}+n^{2} c^{2}\right)+1\right]} \\
= & \sum_{(m, n) \in \mathbb{Z}^{2} \backslash\{0\}} \frac{1}{4 \pi^{2}\left[\left(m a_{0}+n b_{0}\right)^{2}+n^{2} c_{0}^{2}+R\left(a-a_{0}, b-b_{0}, c-c_{0}\right)\right]} \\
& \cdot \frac{1}{4 \pi^{2}\left[\left(m a_{0}+n b_{0}\right)^{2}+n^{2} c_{0}^{2}+R\left(a-a_{0}, b-b_{0}, c-c_{0}\right)\right]+1} \\
= & \sum_{(m, n) \in \mathbb{Z}^{2} \backslash\{0\}} \frac{1}{\left[4 \pi^{2}\left(m^{2} a_{0}^{2}+2 a_{0} b_{0} m n+n^{2}\left(b_{0}^{2}+c_{0}^{2}\right)\right)\right] \cdot\left[4 \pi^{2}\left(m^{2} a_{0}^{2}+2 a_{0} b_{0} m n+n^{2}\left(b_{0}^{2}+c_{0}^{2}\right)\right)+1\right]} \\
& \cdot \frac{1}{1+\frac{R\left(a-a_{0}, b-b_{0}, c-c_{0}\right)}{m^{2} a_{0}^{2}+2 a_{0} b_{0} m n+n^{2}\left(b_{0}^{2}+c_{0}^{2}\right)}} \cdot \frac{1}{1+\frac{4 \pi^{2} R\left(a-a_{0}, b-b_{0}, c-c_{0}\right)}{4 \pi^{2}\left(m^{2} a_{0}^{2}+2 a_{0} b_{0} m n+n^{2}\left(b_{0}^{2}+c_{0}^{2}\right)\right)+1}} .
\end{aligned}
$$

We obtain a series expansion of the formula above by expanding the function $\frac{1}{1+x}$ at 0 and rearranging the terms since that the coefficients converge absolutely. Take a function composition with $c=1 / a$, we obtain that

$$
\sum_{p \in \Lambda^{*} \backslash\{0\}} \frac{1}{4 \pi^{2}|p|^{2} \cdot\left(4 \pi^{2}|p|^{2}+1\right)}
$$

is an analytic w.r.t. lattice.
Similarly, the function $\zeta_{\Lambda^{*}}^{0}(x)$ is an analytic w.r.t. lattice.
For the function $f_{2}(\Lambda), f(x)+c_{0}$ is independent of the lattice, so we only need to prove that $2 \pi \int_{1}^{+\infty}\left(\theta_{\Lambda^{*}}(\alpha)-\right.$ 1) $I(x, \alpha) \frac{\mathrm{d} \alpha}{\alpha}$ is an analytic w.r.t. lattice. The series is a positive series, it converges absolutely. The function $\theta_{\Lambda^{*}}(\alpha)-1$ is a positive series and converges absolutely for any α, and each term in the series is analytic, so we rewrite the function $2 \pi \int_{1}^{+\infty}\left(\theta_{\Lambda^{*}}(\alpha)-1\right) I(x, \alpha) \frac{\mathrm{d} \alpha}{\alpha}$ in the form of a series w.r.t. lattice. Therefore, the function $f(x)+c_{0}+2 \pi \int_{1}^{+\infty}\left(\theta_{\Lambda^{*}}(\alpha)-\right.$ 1) $I(x, \alpha) \frac{\mathrm{d} \alpha}{\alpha}$ is an analytic w.r.t. lattice.

Now we know that the functions $f_{1}(\Lambda)$ and $f_{2}(\Lambda)$ are analytic, and $f_{1}=f_{2}$ in the neighborhood of a triangular lattice, so $f_{1} \equiv f_{2}$ for all lattices with fixed area 1 .

We use a result due to Montgomery.
Theorem 2.1. (See [7].) For any $\alpha>0$,

$$
\theta_{f}(\alpha) \geq \theta_{h}(\alpha)
$$

where $f(\mathbf{u})=f\left(u_{1}, u_{2}\right)=a u_{1}^{2}+b u_{1} u_{2}+c u_{2}^{2}$ is a positive definite binary quadratic form with real coefficient and discriminant $b^{2}-4 a c=-1$, and $h(\mathbf{u})=\frac{1}{\sqrt{3}}\left(u_{1}^{2}+u_{1} u_{2}+u_{2}^{2}\right)$. If there is an $\alpha>0$ such that $\theta_{f}(\alpha)=\theta_{h}(\alpha)$, then f and h are equivalent forms and $\theta_{f}(\alpha) \equiv \theta_{h}(\alpha)$.

From the theorem above, we know that the minimum of the Jacobi Theta function θ over \mathcal{L} (recall that \mathcal{L} is the set of all Bravais lattices with area 1) is uniquely achieved by $\Lambda_{0}^{*}, \Lambda_{0}=\sqrt{\frac{2}{\sqrt{3}}}(\mathbb{Z}(1,0) \oplus \mathbb{Z}(1 / 2, \sqrt{3} / 2)$). Denote by Λ a Bravais lattice, then apply Lebesgue's dominated convergence theorem, we have:

$$
\begin{aligned}
W(\Lambda)-W\left(\Lambda_{0}\right) & =\pi \lim _{x \rightarrow 0}\left(\zeta_{\Lambda^{*}}(x)-\zeta_{\Lambda_{0}^{*}}(x)\right)=\pi \lim _{x \rightarrow 0} 2 \pi \int_{1}^{+\infty}\left(\theta_{\Lambda^{*}}-\theta_{\Lambda_{0}^{*}} I(x, \alpha) \frac{\mathrm{d} \alpha}{\alpha}\right. \\
& =2 \pi^{2} \int_{1}^{+\infty}\left(\theta_{\Lambda^{*}}-\theta_{\Lambda_{0}^{*}} I(0, \alpha) \frac{\mathrm{d} \alpha}{\alpha} .\right.
\end{aligned}
$$

By using Theorem 1 of [7] and the fact that $I(0, \alpha)>0$, we have $W(\Lambda) \geq W\left(\Lambda_{0}\right)$ for all lattices $\Lambda \in \mathcal{L}$, and the equality holds if and only if $\Lambda=\Lambda_{0}$. Therefore the triangular lattice is the unique minimizer of energy $W(\Lambda)$.

Acknowledgement

The author is very grateful to his Ph.D. advisers Yuxin Ge and Étienne Sandier for their constant encouragement and many helpful discussions.

References

[1] A.A. Abrikosov, On the magnetic properties of superconductors of the second group, Sov. Phys. JETP 5 (1957) 1174-1182.
[2] A. Aftalion, X. Blanc, F. Nier, Lowest Landau level functional and Bargmann spaces for Bose-Einstein condensates, J. Funct. Anal. 241 (2) (2006) 661-702.
[3] A. Aftalion, S. Serfaty, Lowest Landau level approach in superconductivity for the Abrikosov lattice close to $H_{c_{2}}$, Sel. Math. New Ser. 13 (2) (2007) 183-202.
[4] H. Aydi, E. Sandier, Vortex analysis of the periodic Ginzburg-Landau model, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 26 (4) (2009) $1223-1236$.
[5] F. Bethuel, H. Brezis, F. Hélein, Ginzburg-Landau Vortices, Progress in Nonlinear Differential Equations and Their Applications, vol. 13, Birkhäuser, Boston Inc., Boston, MA, USA, 1994.
[6] X.F. Chen, Y. Oshita, An application of the modular function in nonlocal variational problems, Arch. Ration. Mech. Anal. 186 (1) (2007) 109-132.
[7] H.L. Montgomery, Minimal theta functions, Glasg. Math. J. 30 (1) (1988) 75-85.
[8] B. Osgood, R. Phillips, P. Sarnak, Extremals of determinants of Laplacians, J. Funct. Anal. 80 (1) (1988) 148-211.
[9] E. Sandier, S. Serfaty, From the Ginzburg-Landau model to vortex lattice problems, Commun. Math. Phys. 313 (3) (2012) 635-743.

[^0]: E-mail address: peng.zhang@univ-paris-est.fr.
 http://dx.doi.org/10.1016/j.crma.2015.01.001
 1631-073X/© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

