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We characterize d-uple Veronese embeddings of finite-dimensional projective spaces. The 
easiest non-trivial instance of our theorem is the embedding of the projective plane in a 
5-dimensional projective space, a result obtained in 1901 by Severi when the underlying 
field is the field of complex numbers.
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r é s u m é

Nous caractérisons les plongements d-uples de Veronese d’espaces projectifs de dimension 
finie. L’instance non triviale la plus simple de notre théorème est le plongement du plan 
projectif dans un espace projectif de dimension 5, un résultat obtenu en 1901 par Severi 
lorsque le corps sous-jacent est le corps des nombres complexes.

© 2015 Published by Elsevier Masson SAS on behalf of Académie des sciences.

1. Introduction

In 1901, Severi [17] characterized the Veronese surface as the only smooth irreducible and non-degenerate projective 
surface in a 5-dimensional complex projective space that can be projected isomorphically into a 4-dimensional complex 
projective space. In 1921, this theorem was strengthened by C. Segre [15], see [10] for a modern account.

In 1984, Mazzocca and Melone [9] used three simple axioms (the MM-axioms) to characterize the ordinary quadric 
Veronese variety over finite fields of odd order. This was extended to all finite fields by Hirschfeld and Thas [5] and to 
arbitrary fields by Schillewaert and Van Maldeghem [14]. Our main result holds for an arbitrary finite degree d and arbitrary 
fields of cardinality at least (d+1)2

2 using a generalization of the MM-axioms. As Severi’s conditions imply the MM-axioms 
[7,21] for the case of surfaces in a 5-dimensional space, Severi’s theorem is a particular instance of our result.

The Veronese embedding φn,d : Pn(K) → P

(n+d
d

)−1(K) maps (x0, . . . , xn) to (xd
0, x

d−1
0 x1, . . . , xd

n). The Veronese variety Vdn

n is 
the image of this map. A rational normal curve C in a d-dimensional projective space Σ is a set of points of Σ that is 
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projectively equivalent to Vd
1 . For any x ∈ C one can define a unique tangent line Tx(C), which is determined by the points 

of the curve if either d = 2 or |K| ≥ d + 2.
Let V be a possibly infinite-dimensional, non-trivial vector space over some field K, and let P(V ) be the corresponding 

projective space. Let X be a spanning point set of P(V ) and let Ξ be a collection of d-dimensional subspaces of P(V ), 
the rational spaces of X , such that, for any ξ ∈ Ξ , the intersection ξ ∩ X is a rational normal curve X(ξ) in ξ of dimen-
sion d (d ≥ 2) and then, for x ∈ X(ξ), we sometimes denote Tx(X(ξ)) simply by Tx(ξ). We call V = (X, Ξ), or briefly X , 
a Veronesean cap of degree d if the following properties (V1), (V2) and (V3) hold.

(V1) Any two points x and y of X are contained in an element of Ξ , denoted by [x, y] if unique.
(V2) If ξ1, ξ2 ∈ Ξ , with ξ1 �= ξ2, then ξ1 ∩ ξ2 ⊂ X .
(V3) For every x ∈ X , every ξ ∈ Ξ , with x /∈ ξ , 

⋃
y∈X(ξ) Tx([x, y]) is a plane T (x, ξ) depending on x and ξ .

The condition (V1) alone is not sufficient to characterize Veronese varieties, as for instance geometries related to the 
non-split version of the second row of the Freudenthal–Tits Magic square, e.g., coming from the real form E28

6,2 of a group 
of exceptional type E6 satisfy (V1).

Projecting the Veronese variety Vd2

2 from a point y contained in the span of two of its rational subspaces, but not 
contained in the span of a point of the variety and a rational space, nor in any of the planes T (x, ξ), yields an example that 
satisfies (V1) and (V3), but not (V2). (Such a point y exists for finite fields K and large enough d by counting.) Moreover, 
there are examples satisfying (V1) and (V2), but not (V3), e.g., Veroneseans of Hermitian unitals.

In the complex case, every (possibly singular) non-degenerate curve in Pd of degree d is a rational normal curve [18, 
p. 121]. In the finite case, one can sometimes relax the conditions [2], but not always [3,16].

A Veronese variety is a Veronesean cap: By Lemma 2.3 of [6] the images of lines are rational normal curves. Property (V1) 
is immediate. To verify (V2), by homogeneity, see [6], we only need to check two situations, namely ψ1,2 := 〈φn,d(L1)〉 ∩
〈φn,d(L2)〉, and if n ≥ 3 we need to compute also ψ1,3 := 〈φn,d(L1)〉 ∩ 〈φn,d(L3)〉, where L1 is given by Xi = 0, 2 ≤ i ≤ N , 
L2 by Xi = 0, i �= 2, 1 ≤ i ≤ N and L3 by Xi = 0; 0 ≤ i ≤ N − 2. Then a computation yields ψ1,2 := φn,d(L1 ∩ L2) and 
ψ1,3 = ∅. For (V3), again by homogeneity, consider the point r := (0, . . . , 0, 1) and the points p1 := (1, 0, . . . , 0) and p2 :=
(0, 1, 0, . . . , 0) on L1. Then a computation yields that the plane spanned by the tangent lines at φn,d(r) to φn,d(〈r, p1〉) and 
φn,d(〈r, p2〉) is the requested one.

2. Statement of the Main Result

Proposition 2.1. If X is a Veronesean cap, then for every x ∈ X the set 
⋃

ξ∈Ξ,x∈ξ Tx(ξ) is a subspace of constant dimension.

We call the dimension of these subspaces the index. In Proposition 4.4 we prove an upper bound on the dimension of a 
Veronesean cap of finite index.

Lemma 2.2. If X is a Veronesean cap of degree d and finite index n ≥ 2 in a projective space P(V ) over a field K, then dim V ≤ M.

We classify extremal Veronesean caps, i.e. those of largest possible dimension with respect to their degree and index, 
over fields of sufficiently large cardinality with respect to the degree.

Main Result. If X is a Veronesean cap of degree d and finite index n ≥ 2 in a projective space P(V ) over a field K where dim V =
M := (n+d

d

)
and such that |K| ≥ (d+1)2

2 , then X is projectively equivalent to the Veronese variety Vdn

n over K.

In the complex case, a similar result was proved already in 1921 by Bompiani [1], extending C. Segre’s result and more 
recently for arbitrary n by Pirio and Russo [12], Pirio and Trépreau [13]. They assume (V1) and a global version of (V3), but 
do not require (V2). On the other hand, they require X to be a variety from the outset. For the case d = 2, it is not difficult 
to deduce our axioms from Severi’s, see, e.g., [7].

An interesting open problem is whether an analogue of Theorem 2.2 could be proved over arbitrary fields not using (V2) 
and using a global version of (V3). In particular, we are unaware of examples where (V1) and (V3) and dim V = M hold, but 
not (V2). Also the general study of projections of the Veronese variety in this axiomatic setting deserves further attention.

Remark 2.3. One can often relax the bound on the field size in the Main Result, as in fact three separate bounds appear in 
our proof. For n = 2, d ≥ 6, we need the strongest bound of the three, which is |K| ≥ (d+1)2

2 , to assure the existence of an 
arc of size d + 1 in non-Desarguesian projective planes of order |K| by a result of Lunelli and Sce [8]. (Note that if n ≥ 3
such an arc always exists.) A bound |K| ≥ d + 2 when d �= 2 is necessary, as otherwise the tangent lines are not determined 
by the points of the curve. Lastly, the bound

|K|n − 1

|K| − 1
≥ 2 +

min(n−1,d)∑
(−1)i

(
d + 1

i + 1

) |K|n−i − 1

|K| − 1

i=2
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is used to prove Lemma 4.3. This bound is always satisfied if |K| ≥ d
3
2 and becomes irrelevant in view of the d + 2 bound 

for n ≤ 2 or d ≤ 10.

3. Basic properties of rational normal curves

Let C be a rational normal curve in a d-dimensional projective space Σ as defined in Section 1 (with d ≥ 2).

Lemma 3.1. (See [6, Theorem 1.1].) All d + 1 points of C are linearly independent.

Observation 3.2. (See [4, Ex. 1.19].) The rational normal curve C comes equipped with a notion of crossratio on quadruples of points, 
such that the group PGL(2, K) acts three-transitively on C while preserving the crossratio.

Lemma 3.3. Let x be a point of the curve C , then a projection from x to a hyperplane not incident with it maps C \ {x} and the tangent 
line through x bijectively to the points of a rational normal curve in a (d − 1)-dimensional projective space. This projection preserves 
the crossratio on C.

Proof. By Observation 3.2, we may fix x = (1, 0, . . . , 0) in Σ . This reduces the problem to an easy calculation. �
Repeated application of Lemma 3.3 shows the following.

Corollary 3.4. Let x1, . . . , xi be i pairwise different points of C such that 1 ≤ i ≤ d − 1. Then a projection from the span of x1, . . . , xi
to a complementary subspace maps C \ {x} and the tangent lines through x1, . . . , xi bijectively to the points of a rational normal curve 
in a (d − i)-dimensional projective space. This projection preserves the crossratios C.

Observation 3.5. By considering 4 points of C and applying Corollary 3.4 to d − 1 other points on the curve (which always exist when 
|K| ≥ 4 by the d + 2 bound of Remark 2.3), one obtains that the crossratio mentioned in Observation 3.2 solely depends on the point 
set of C. For |K| = 2 or 3 this is trivial as there is only one way to define a valid crossratio on 3 or 4 points.

Using Corollary 3.4 considering a projection from 〈C ∩ L1, . . . , C ∩ Li〉 yields Corollary 3.6.

Corollary 3.6. Let L1, . . . , Li and x1, . . . x j be respectively i tangent lines on C and j points of C , none of which are equal or incident 
with each other. If 2i + j ≤ d + 1, then the span of these lines and points is of dimension 2i + j − 1.

4. Proof of the Main Result

4.1. The projective space associated with a Veronesean cap

We use the same notation as in Section 1. Associated with V we can consider the geometry P having point set X and 
line set Ξ , endowed with the natural incidence. Then a proof similar to [19, Prop. 2.2] yields Proposition 4.1.

Proposition 4.1. P is a projective space of dimension n ≥ 2.

Also the proof of Proposition 2.1 is essentially the same as that of [19, Prop. 2.4]. The obtained index is the same n as in 
Proposition 4.1.

From now on, we denote a point of P with a .̄, e.g. x̄, and the corresponding point in P(V ) without a .̄, e.g. x. Similarly, 
we denote subspaces of P with a .̄, and if π̄ is a subspace of P , then π := 〈x ∈ X |x̄ ∈ π̄〉. The following easy observation 
will be crucial for induction arguments.

Lemma 4.2. Let π̄ be some non-empty subspace of P , then (Xπ , Ξπ) with Xπ := {x|x̄ ∈ π̄}, and Ξπ := {ξ ∈ Ξ |X(ξ) ⊂ Xπ }, is a 
Veronesean cap of degree d inside π , which we call a subcap.

4.2. Dimensional analysis

In the remainder of the proof, let (X, Ξ) be a Veronesean cap of degree d and index n, satisfying the restrictions listed 
in the Main Result. We assume as induction hypothesis that the Main Result holds for Veronesean caps of index up to n − 1, 
note that the cases of index 0 and 1 are trivial.

Lemma 4.3. Let π̄1, π̄2, . . . π̄d+1 be a set of hyperplanes of P in general position. If x̄ is a point of P not contained in any of these 
hyperplanes, then there exist at least two different lines through x such that each point on these lines is contained in at most two of the 
hyperplanes π̄1, π̄2, . . . π̄d+1 .
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Proof. This holds as the right-hand side of the second inequality of Remark 2.3 counts the number of intersection points of 
at least three of these subspaces (via the inclusion–exclusion principle) plus two, while the left-hand side of this inequality 
counts the number of lines through x. �

For the following proposition, we need d + 1 hyperplanes of P in general position. Note that if P is Moufang (which is 
automatically true for n ≥ 3) and |K| ≥ d there do exist hyperplanes π̄1, π̄2, . . . , π̄d+1 in general position, for example the 
dual of the point set of a rational normal curve in P . If P is a projective plane that is not Moufang, then [8] asserts the 
existence of d + 1 points in general position as soon as K ≥ (d+1)2

2 .

Proposition 4.4. Let π̄1, π̄2, . . . , π̄i (0 ≤ i ≤ d + 1) be a number of hyperplanes of P in general position that is extendable to a set of 
d + 1 hyperplanes in general position. Then

(i) If dim V = M, then codim〈π1, π2, . . . , πi〉 =
(n+d−i

d−i

)
.

(ii) dim V ≤ M.
(iii) If dim V = M then πi ∩ 〈π1, . . . , πi−1〉 = 〈πi ∩ π1, . . . , πi ∩ πi−1〉.
(iv) If dim V = M and the geometric dimension of π̄ is m, then the geometric dimension of π is 

(m+d
d

) − 1. In particular, (Xπ , Ξπ) is 
a Veronesean cap of degree d and index m satisfying the restrictions listed in the Main Result.

Proof. First we prove codim〈π1, π2, . . . , πi〉 ≤
(n+d−i

d−i

)
by induction on both n and d − i, making use of Lemma 4.2. The case 

n = 1 follows by Section 3, so assume n ≥ 2.
First assume that d − i = −1. Let x be any point in X \ (

⋃d+1
j=1 π j), and let ξ ∈ Ξ be a rational normal space through x

such that each y ∈ X(ξ) is contained in at most two of the subspaces πi (which exists by Lemma 4.3). For such a ξ , we 
have that if y is contained in some subspace πi , then it is contained in 〈π1, π2, . . .πi〉. If it is contained in two of these 
subspaces, then also its tangent line is contained in 〈π1, π2, . . .πd+1〉. Hence 〈π1, π2, . . .πd+1〉 contains ξ , and by varying x
all of X .

Secondly assume that d − i ≥ 0. In this case we pick a hyperplane π̄i+1 of P such that π̄1, π̄2, . . . , π̄i+1 are in general 
position. The codimension of the span 〈π1, π2, . . . , πi〉 in P(V ) equals the sum of the codimension c1 of 〈π1, π2, . . . , πi〉
in 〈π1, π2, . . . , πi+1〉 and the codimension c2 of 〈π1, π2, . . . , πi+1〉 in P(V ). Then c1 is at most the codimension of 〈π1 ∩
πi+1, . . . , πi ∩ πi+1〉 in πi+1, which is bounded from above by 

(
(n−1)+d−i

d−i

)
by induction on n, and c2 is bounded from above 

by 
(n+d−(i+1)

d−(i+1)

)
by induction on d − i. The sum of both is at most 

(n+d−i
d−i

)
.

The bound for i = 0 yields dim V ≤ M (proving (ii)). If dim V = M , then all bounds above have to be sharp, which proves 
(i) and (iii). Repeated application of (i) with i = 1 proves (iv). �
4.3. The projective space P is isomorphic to Pn(K)

As we know, the dimension of P from Proposition 4.1 one can use part (iv) of Proposition 4.4 to restrict to the case n = 2
for the remainder of Section 4.3. Remember from Observations 3.2 and 3.5 that the point sets of the rational normal curves 
ξ ∩ X with ξ ∈ Ξ come equipped with a natural crossratio on quadruples. By construction of P , this yields a crossratio on 
the point sets of lines of P . The next step is now to define a crossratio on line pencils of P .

Observation 4.5. Let x̄ be an arbitrary point of P and identify each line ζ̄ through x̄ with the tangent line Tx(ζ ). Hence, by (V3), we 
obtain a correspondence of lines through x̄ with lines in the tangent plane on x. The latter, being a line pencil in the projective space 
P(V ), comes with a natural notion of a crossratio, which via identification provides a crossratio on the line pencil through x̄ in P .

The next lemma links these crossratios together.

Lemma 4.6. The perspectivity from the line pencil through a point x̄ of P to the points on a line ξ̄ of P not containing x̄ preserves the 
crossratios defined on these.

Proof. Extend the line ξ̄ to a set of lines {ξ̄ , ̄ξ2, . . . ξ̄d+1} in general position, such that only ξ̄d+1 contains x̄.
Parts (i) and (ii) of Proposition 4.4 imply that the codimension of 〈ξ2, . . . , ξd〉 is 3. Hence we may consider a projection τ

of P(V ) from 〈ξ2, . . . , ξd〉 on some two-dimensional subspace disjoint from it. Proposition 4.4 also implies that τ maps ξ on 
some line L (as 〈ξ, ξ2, . . . , ξd〉 is of codimension one) and that x is mapped to a point disjoint from L (by part (iii) applied 
to ξd+1 and 〈ξ, ξ2, . . . , ξd〉).

The points of the curve X(ξ) not in ξ2 ∪ · · · ∪ ξd and the tangent lines on ξ through the remaining points on this curve 
project to pairwise distinct points of L while preserving the crossratios, by Corollary 3.4 and part (iii) of Proposition 4.4. 
This Corollary 3.4 also states that this projection preserves crossratios, hence we have connected the crossratio on ξ ∩ X
and the crossratio on L.
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Let ξ ′ be some rational normal space through x. From Corollary 3.6 and counting the number of points of X ∩ξ ′ contained 
in any of the ξ, ξ2, . . . ξd−1, while accounting for the tangent lines of the points that are contained in two of these rational 
normal spaces (applying (V3)), it follows that the image of ξ ′ under τ is at most one-dimensional. As this image contains 
τ (x) and a point of L it has to be a line.

In the image of the projection we hence obtain a perspectivity between the line pencil through the point x̄ of P and the 
points on ξ̄ , preserving the crossratios on both. �

This has the following immediate consequence.

Corollary 4.7. The induced action on the rational normal curve X(ξ) of the projectivity group of P w.r.t. to a line ξ̄ of P preserves the 
natural crossratio on it.

Let G be the projectivity group of P w.r.t. to some line ξ̄ of P . Then G ≤ PGL(2, K) as the latter consists of those 
permutations preserving the crossratio. As PGL(2, K) acts sharply 3-transitive while G is at least 3-transitive, one has G =
PGL(2, K). Moreover, by von Staudt’s theorem [20], this implies that the projective plane P is Pappian, hence K is a field 
and P is isomorphic to P2(K).

Let us mention another corollary.

Corollary 4.8. Let x̄ and ξ̄ be a point and line of P such that x̄ /∈ ξ̄ . Then the map

X(ξ) → T (x, ξ) : y �→ Tx
([x, y])

is completely determined by the curve X(ξ), the point x, and the images of at least three points in X(ξ) under this map.

Proof. By Lemma 4.6 this map preserves crossratios, so knowing the image of three points suffices to completely determine 
the map. �
4.4. Mapping X onto a Veronese variety

Let Y represent the point set of the projective space P . By construction of P , we have a bijective map ι : Y → X : x̄ �→ x. 
If we set X ′ and Ξ ′ to be respectively the point set and the set of rational spaces of a Veronese variety Vdn

n over the field 
K with ambient vector space P(V ′), then, by construction of the variety, we also have a bijective map ι′ : Y → X ′ , i.e. the 
Veronese embedding.

Our goal is to show that the bijective map ϕ := ι′ ◦ ι−1 from X to X ′ lifts uniquely to a collineation between the ambient 
projective spaces. We do this by induction on subcaps Z of increasing index m.

4.4.1. The case m = 1
Here we have to consider a map ϕ defined on a subcap Z of index 1, so on the points of a certain rational normal curve 

X(ξ) (with ξ ∈ Ξ ). We want to show that ϕ extends uniquely to a collineation defined on the subspace ξ of P(V ). This is 
the case if and only if ϕ preserves the crossratios on the rational normal curve up to a possible field automorphism (see for 
example [4, Ex. 1.19]).

We may assume that the index of X is 2 (by using (iv) of Proposition 4.4), so that P is a projective plane. As the 
projectivity group determines crossratios up to a possible field automorphism σ , and by the fact that this group is a feature 
of P and does not depend on the actual structure of X and X ′ , it is implied that ϕ preserves the crossratio on X(ξ) up to 
a field automorphism σ .

Remark 4.9. Moreover, by Lemma 4.6, the field automorphism σ does not depend on the choice of the subcap Z .

4.4.2. The case m ≥ 2
We may suppose without loss of generality that Z = X , so m = n. Fix d + 1 hyperplanes π̄1, π̄2, . . . , π̄d+1 of P in general 

position, obtained by considering the dual of a rational normal curve in Pn(K). The spaces π1, . . . , πd+1 span P(V ) by 
Proposition 4.4.

The induction hypothesis allows us to define a collineation ρ mapping the subspace π1 to the subspace ϕ(π1), in such 
a way that ρ extends ϕ on X ∩ π1. We now extend ρ recursively to a collineation agreeing with ϕ on X ∩ (

⋃d+1
j=1 π j). 

Suppose that we already have defined ρ on the span of π1 up to πi , agreeing with ϕ on X ∩ (
⋃i

j=1 π j) (1 ≤ i ≤ d). Then, 
in order to extend ρ to a collineation defined on the span up to π1 up to πi+1, it suffices to extend the restriction of ρ
on πi+1 ∩ 〈π1, . . . , πi〉 to πi+1. This is possible because of the induction hypothesis and (iii) and (iv) of Proposition 4.4 (and 
using Remark 4.9 in the case m = 2 to avoid having conflicting field automorphisms). Eventually, we obtain a collineation ρ
defined on the entirety of P(V ), agreeing with ϕ on X ∩ (

⋃d+1 π j).
j=1
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Proposition 4.10. The collineation ρ agrees with ϕ on the entirety of X.

Proof. Let x be any point in X \ ⋃d+1
j=1 π j . It suffices to show that x is uniquely determined by the points X ∩ (

⋃d+1
j=1 π j).

By Lemma 4.3, we can find two lines ξ̄1 and ξ̄2 through x̄ such that each point on these lines is contained in at most 
two of the hyperplanes π̄1, π̄2, . . . , π̄d+1. If d ≤ 3, we can pick these such that each point on these lines is contained in at 
most one such hyperplane.

Assume d > 3, and let y be a point on ξ1 contained in two of the hyperplanes, we may suppose these are π1 and πd+1. 
By the bounds in Remark 2.3, we have |K| ≥ d + 2. Next we reconstruct the tangent line L := T y(ξ1) from the points in 
X ∩ (

⋃d+1
j=1 π j). We already know the position of y and some plane in which L is contained by property (V3). If n > 2, we 

know at least two of these planes, which determines L uniquely, so we are left with the case that n = 2.
As |K| ≥ d + 2 and by the construction of the lines π̄1, π̄2, . . . , π̄d+1, there exists some lines π̄d+2 and π̄d+3 such that 

π̄1, π̄2, . . . , π̄d+3 are in general position. As π̄d+2 and π̄d+3 intersect the π̄1, π̄2, . . . , π̄d+1 in d + 1 pairwise different points, 
the position of the subspaces πd+2 and πd+3 is uniquely determined. Also the unique intersection point of both, which we 
denote by z, is determined.

Applying part (iii) of Proposition 4.4 to π1 and πd+2 yields that y, z /∈ 〈πi |2 ≤ i ≤ d〉. Part (iii) of Proposition 4.4 applied 
to π1 and π2, . . . , πd+1 also yields T y(π1) �⊂ 〈πi |2 ≤ i ≤ d〉, in particular the projections of the tangent lines T y(π1) and 
T y(πd+1), and hence all tangent lines in T (x, π2), are pairwise different. Using this projection we can also determine the 
tangent line T y([y, z]) (this is the unique line in T (x, π2) mapped to the line containing the projections of y and z). 
Corollary 4.8 now allows us to determine all tangent lines through y, in particular L.

By Corollary 3.6 the points in X ∩ (
⋃d+1

j=1 π j) uniquely determine ξ1 and analogously ξ2. The point x ∈ ξ1 ∩ ξ2 is hence 
also uniquely determined. �

This concludes the proof of the Main Result. As pointed out by the referee, an alternative approach could be to generalize 
Morin’s result on families of intersecting subspaces [11].
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