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The stabilization of the Timoshenko beam system with localized damping is examined. The 
damping involves the sum of the bending and shear angle velocities; this work generalizes 
an earlier result of Haraux, established for a system of ordinary wave equations, to the 
Timoshenko system. First, we show that strong stability holds if and only if the boundary 
of the support of the feedback control intersects that of the interval under consideration. 
Next, we use the frequency domain method combined with the multipliers technique to 
prove the exponential stability of the associated semigroup when the damping support is 
a neighborhood of one endpoint of the interval under consideration. When the speed of 
propagation of the wave generated by the bending and that of the wave generated by the 
shear angle are distinct, the proof is similar to what is known for two ordinary waves 
similarly damped. However, when the two speeds are equal, an important identity breaks 
down, and the proof is carried out by the introduction of an appropriate auxiliary equation 
whose solution plays a critical role in subsequent estimates.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Dans cette note est examinée la stabilisation de la poutre de Timoshenko avec un 
amortissement localisé. L’amortissement est lié à la somme des vitesses de tassement et 
de cisaillement angulaire ; ce travail généralise au système de Timoshenko un résultat 
antérieur de Haraux, établi pour un système d’équations d’ondes ordinaires. D’abord, 
nous montrons que la stabilité forte a lieu si et seulement si le support du contrôle 
rencontre une extrémité de l’intervalle considéré. Puis nous utilisons la combinaison de la 
méthode des multiplicateurs avec la méthode du domaine des fréquences pour démontrer 
la stabilité exponentielle du semi-groupe associé quand le support du contrôle rencontre 
une extrémité de l’intervalle considéré. Quand la vitesse de propagation de l’onde générée 
par le tassement et celle de l’onde générée par l’angle de cisaillement sont distinctes, 
la preuve est semblable à celle connue pour deux ondes amorties de la même manière. 
Cependant, quand les deux vitesses sont égales, une identité importante perd sa validité, 
et la preuve se poursuit par l’introduction d’une équation auxiliaire dont la solution joue 
un rôle prépondérant dans les estimations ultérieures.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction and statement of the main results

The stabilization of the Timoshenko beam with various damping mechanisms has been the subject of extensive research 
over the years. In particular, it is known that when a single dissipation acting through the shear angle equation is utilized, 
the associated semigroup is exponentially stable if and only if the speeds of propagation of the corresponding waves are 
equal, e.g. [1,2,4,7,13,15,16,18]:

k

ρ1
= σ

ρ2
. (1)

Condition (1), though mathematically reasonable, is physically unrealistic; it is never satisfied in the real world [12, p. 56]. 
This last observation may have led some authors to use two feedback controls to exponentially stabilize the Timoshenko 
system independently of (1); e.g. [3,6,11]. The present note fits in the latter framework, but the damping scheme involves 
the same feedback control in both equations unlike the cited works where two independent controls are employed. This 
contribution is motivated by an earlier work of Haraux involving a system of wave equations with different speeds of 
propagation [8,9].

For the sequel, we need some notations. Let Ω = (0, L), where L is a positive real number. Let ω = (l1, l2) with 0 ≤ l1 <

l2 ≤ L, and let a ∈ L∞(Ω), be a nonnegative function satisfying:

∃a0 > 0 : a(x) ≥ a0, a.e. x ∈ ω. (2)

Throughout the note, we denote by |u|r the norm of a function u ∈ Lr(Ω), 1 ≤ r ≤ ∞.
Consider the following damped Timoshenko system{

ρ1 ytt − k(yx + z)x + a(yt + zt) = 0 in (0, L) × (0,∞)

ρ2ztt − σ zxx + k(yx + z) + a(yt + zt) = 0 in (0, L) × (0,∞),
(3)

with the boundary conditions (DD stands for Dirichlet–Dirichlet, while DN represents Dirichlet–Neuman):

(DD) y(0, t) = 0, y(L, t) = 0, z(0, t) = 0, z(L, t) = 0, or else
(DN) y(0, t) = 0, y(L, t) = 0, zx(0, t) = 0, zx(L, t) = 0, t > 0

and the initial conditions: y(x, 0) = y0(x), yt(x, 0) = y1(x), z(x, 0) = z0(x), zt(x, 0) = z1(x), x ∈ Ω . System (3) describes the 
motion of a beam when the effects of rotatory inertia are accounted for; the transverse displacement is represented by 
y while z denotes the shear angle displacement. The constants ρ1, ρ2, k, σ are physical constants and are all positive. 
Condition (2) ensures that the damping is effective in ω. It is worthwhile noting that the damping that is being used is 
somehow degenerate since the matrix defining it is singular; this makes the stabilization problem more challenging, and 
worth investigating.

Introduce the energy

E(t) = 1

2

∫
Ω

{
ρ1

∣∣yt(x, t)
∣∣2 + k

∣∣yx(x, t) + z(x, t)
∣∣2 + ρ2

∣∣zt(x, t)
∣∣2 + σ

∣∣zx(x, t)
∣∣2}

dx, ∀t ≥ 0. (4)

The energy E is a nonincreasing function of the time variable t as we have for every t ≥ 0 (hereafter, ′ denotes differentiation 
with respect to time)

E ′(t) = −
∫
Ω

a(x)
∣∣yt(x, t) + zt(x, t)

∣∣2
dx. (5)

Our main purpose in this note is to answer the following questions:

• does the energy E(t) decay to zero as the time variable t goes to infinity?
• if so, how fast? And if not, why?

To study the stabilization problem at hand, we are going to recast System (3) as an abstract evolution system. To this end, 

setting Z =
( y

y′
z
z′

)
, (3) may then be recast as: Z ′ − AZ = 0 in (0, ∞), Z(0) =

⎛
⎝ y0

y1

z0

z1

⎞
⎠ where the unbounded operator A is 

given by

A =
⎛
⎜⎝

0 I 0 0
k
ρ1

∂2
x − a

ρ1
I k

ρ1
∂x − a

ρ1
I

0 0 0 I
− k

ρ2
∂x − a

ρ2
I σ

ρ2
∂2

x − k
ρ2

I − a
ρ2

I

⎞
⎟⎠ (6)

with, in the (DD) case: D(A) = {(u, v, w, z) ∈ (H1
0(Ω) × H1

0(Ω))2; k(ux + w)x − a(v + z) ∈ L2(Ω), and σ wxx − k(ux + w) −
a(v + z) ∈ L2(Ω)} and, in the (DN) case: D(A) = {(u, v, w, z) ∈ (H1

0(Ω))2 × V 2; k(ux + w)x − a(v + z) ∈ L2(Ω), and σ wxx −
k(ux + w) − a(v + z) ∈ L2(Ω)} where V = {u ∈ H1(Ω); ∫ u(x) dx = 0}.
Ω
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It can easily be checked that in the (DD) case, one has D(A) = ((H2(Ω) ∩ H1
0(Ω)) × H1

0(Ω))2, while in the (DN) case, 
D(A) = (H2(Ω) ∩ H1

0(Ω)) × H1
0(Ω) × (H2(Ω) ∩ V ) × V . Thus, in either case, the operator A has a compact resolvent. 

Consequently, the spectrum of A is discrete.
Introduce the Hilbert spaces over the field C of complex numbers H1 = (H1

0(Ω) × L2(Ω))2 and H2 = H1
0(Ω) × L2(Ω) ×

V × L2(Ω), equipped with the norm

‖Z‖2
Hi

=
∫
Ω

{
ρ1|v|2 + k|ux + w|2 + ρ2|z|2 + σ |wx|2

}
dx, ∀Z = (u, v, w, z) ∈ Hi, i = 1,2. (7)

Our main results read:

Theorem 1.1. Suppose that ω is an arbitrary nonempty open set in Ω . Let the damping coefficient a be positive in ω. In either of 
the (DD) or (DN) case, the associated operator A generates a C0 semigroup of contractions (Si(t))t≥0 on the corresponding Hilbert 
space Hi (i = 1, 2), which is strongly stable:

lim
t→∞

∥∥Si(t)Z 0
∥∥
Hi

= 0, ∀Z 0 ∈ Hi, (8)

if and only if ∂ω ∩ ∂Ω = ∅.

Theorem 1.2. Suppose that ω is an arbitrary nonempty open set in Ω with ∂ω ∩ ∂Ω = ∅. Let the damping coefficient a satisfy (2). For 
each i = 1, 2, the semigroup (Si(t))t≥0 is exponentially stable, viz., there exist positive constants M and λ with∥∥Si(t)Z 0

∥∥
Hi

≤ M exp(−λt)
∥∥Z 0

∥∥
Hi

, ∀Z 0 ∈ Hi . (9)

Remark 1.3. The part of Theorem 1.1 about strong stability is quite surprising since in order for strong stability to hold, 
it is necessary that ω be equal to the whole interval Ω or that its closure contain one of the endpoints of Ω . This is 
the first time that I notice such a restriction in a one-dimensional stabilization problem involving wave equations; usually 
stabilization results for one-dimensional wave equations hold for every nonempty subset ω. Nevertheless, the structure 
of the Timoshenko system and that of the feedback control being used are the features imposing such a constraint. The 
situation here is completely different from what occurs in the case of the system of wave equations addressed in [8,9,17], 
where strong (and even exponential) stability holds for every nonempty subset ω in the one-dimensional setting, provided 
the speeds of propagation are pairwise distinct. As we shall see below, when the nonempty intersection condition fails, the 
operator A possesses imaginary eigenvalues, and so (3) has solutions with constant energy.

Remark 1.4. As far as Theorem 1.2 is concerned, exponential decay of the energy has been established in the literature 
when:

• the matrix defining the damping is positive definite; this is equivalent to using two independent dampings, one in the 
bending equation and one in the shear angle equation,

• one damping is used in the shear angle equation only.

In either of those cases, exponential decay of the energy is established without the nonempty intersection constraint, but 
in the latter case with the assumption of equal speeds of propagation (1), to compensate for the use of a single feedback 
control. In the former case, the fact that the damping matrix is positive definite makes the corresponding stabilization 
problem much simpler than the one that we are dealing with in this note.

To the best of my knowledge, all other cases, including the case at hand, are open. For the sequel, we will be using the 
following additional notations: k̂ = k/ρ1, ǩ = k/ρ2, â = a/ρ1, ǎ = a/ρ2, σ̂ = σ/ρ2.

2. Ideas for proving Theorem 1.1

The semigroup generation is pretty straightforward thanks to Lumer–Phillips Theorem. We will focus our attention on 
strong stability. Since in either case the operator A has a compact resolvent, its spectrum is discrete. Thus, to prove strong 
stability, it suffices, thanks to a result in [5], to show that A has no imaginary eigenvalue. One easily checks that zero is 
not an eigenvalue of A. Now, let b be a nonzero real number, and let Z = (u, v, w, z) ∈ D(A) such that AZ = ib Z . We shall 
prove that Z = (0, 0, 0, 0) if and only if ∂ω ∩ ∂Ω = ∅. Note that AZ = ib Z may be reduced to:{

−b2u − k̂(ux + w)x + ibâ(u + w) = 0 in (0, L)

−b2 w − σ̂ wxx + ǩ(ux + w) + ibǎ(u + w) = 0 in (0, L).
(10)

One easily checks that u = −w in ω, by multiplying the first equation by ū, the second by w̄ , integrating by parts and 
taking the imaginary parts. The heart of the matter now is to check under which condition, one has u ≡ 0 in ω; indeed, 
if we can prove that u ≡ 0 in ω, then w ≡ 0 in ω, and basic uniqueness results may then be invoked to conclude that 
Z = (0, 0, 0, 0). Therefore, it remains to find under which condition u ≡ 0 in ω. Since u = −w in ω, System (10) becomes:{

−b2u − k̂(ux − u)x = 0 in ω

2 ˇ (11)

b u + σ̂uxx + k(ux − u) = 0 in ω.
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Adding both equations in (11), one gets rid of b, thereby obtaining

(σ̂ − k̂)uxx + (k̂ + ǩ)ux − ǩu = 0 in ω. (12)

The characteristic equation for (12) is given by

(σ̂ − k̂)r2 + (k̂ + ǩ)r − ǩ = 0. (13)

So, if σ̂ = k̂, then one gets

r = ǩ/(k̂ + ǩ), u(x) = A erx for every x ∈ ω, (14)

where A is an arbitrary constant.
Consequently, if ∂ω ∩ ∂Ω = ∅, then automatically A = 0, (no matter which homogeneous boundary conditions u may 

satisfy), and so u ≡ 0 in ω. On the other hand, ±i k̂
√

ǩ
k̂+ǩ

are eigenvalues of A, in either case, for ∂ω ∩ ∂Ω = ∅.

If σ̂ = k̂, then the solutions of (13) and (12) are given by

r± = −(k̂ + ǩ) ±
√

(k̂ − ǩ)2 + 4σ̂ ǩ

2(σ̂ − k̂)
, u(x) = A er+x + B er−x, for every x ∈ ω, (15)

where A and B are arbitrary constants.
One checks that the constants A and B satisfy the equations(−b2 − k̂r2+ + k̂r+

)
A = 0,

(−b2 − k̂r2− + k̂r−
)

B = 0,(
b2 + σ̂ r2+ + ǩr+ − ǩ

)
A = 0,

(
b2 + σ̂ r2− + ǩr− − ǩ

)
B = 0. (16)

First assume ∂ω ∩ ∂Ω = ∅, then A = −B e(r−−r+)x0 with x0 = 0 or else x0 = L; therefore u(x) = B(−e(r−−r+)x0+r+x + er−x)

in ω. For σ̂ > k̂, one has r− < 0 so that by the top right equation in (16), one derives B = 0; hence u ≡ 0 in ω. For σ̂ < k̂, 
one derives r− > 1 so that by the bottom right equation in (16), it follows once more B = 0; whence u ≡ 0 in ω. Next, we 

turn to the case ∂ω ∩ ∂Ω = ∅; here, we note ±i
√

k̂r+(1 − r+) are eigenvalues of A, (note that r+ < 1 whatever the sign of 
σ̂ − k̂ might be). In short, we have just shown that the operator A has no imaginary eigenvalue as long as ∂ω ∩ ∂Ω = ∅, 
while it does have imaginary eigenvalues when ∂ω ∩ ∂Ω = ∅. Hence the associated semigroup is strongly stable if and only 
if ∂ω ∩ ∂Ω = ∅. �
3. Ideas for proving Theorem 1.2

By Theorem 1.1, we already know that strong stability holds only when ∂ω ∩ ∂Ω = ∅. So this condition is necessary for 
exponential decay of the semigroup too. We are going to show that it is also sufficient. To this end and for the sake of 
clarity, we set ω = (l1, L), and limit ourselves to the case (DD); the case (DN) being similar. For simplicity sake, we use the 
notation H =H1. We shall use the frequency domain approach, which amounts to showing the two facts [10,14]:

i) iR ⊂ ρ(A), and
ii) sup{‖(ib −A)−1‖L(H); b ∈R} < ∞, where ρ(A) denotes the resolvent set of A.

Thanks to the proof of Theorem 1.1, we already have i). It remains to prove ii). For this purpose, it suffices to show that 
there exists C0 > 0 such that for every U ∈H, one has:∥∥(ib −A)−1U

∥∥
H ≤ C0‖U‖H, ∀b ∈R, (17)

where hereafter, C0 denotes a generic positive constant that may eventually depend on Ω , ω, and the other parameters of 
the system, but never on b. Let b ∈ R, U = ( f , g, h, l) ∈H, and let Z = (u, v, w, z) ∈ D(A) such that

(ib −A)Z = U . (18)

We shall prove ‖Z‖H ≤ C0‖U‖H . To this end, multiply both sides of (18) by Z , then take the real part of the inner product 
in H to derive:∫

Ω

a(x)
∣∣v(x) + z(x)

∣∣2
dx = �(U , Z) ≤ ‖U‖H‖Z‖H. (19)

Eq. (18) may be recast as:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ibu − v = f

ibv − k̂(ux + w)x + â(v + z) = g

ibw − z = h
ˇ

(20)
ibz − σ̂ wxx + k(ux + w) + ǎ(v + z) = l.
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Thanks to (19), we derive

b2
∫
Ω

a(x)
∣∣u(x) + w(x)

∣∣2
dx ≤ 2‖U‖H‖Z‖H + C0‖U‖2

H. (21)

For the sequel, we now introduce a cut-off function that will be used to build needed multipliers. Let q ∈ C2([0, L]) such 
that q ≡ 1 on [0, l1 + ε], q ≡ 0 on [l1 + 2ε, L], for some ε > 0 with l1 + 2ε < L, and set ωε = (l1 + ε, L).

Multiplying the second equation in (20) by 2xq(ūx + w̄), using the first equation in (20), taking the real part, and 
integrating by parts over Ω , one finds

b2|u|22 + k̂|ux + w|22 =
∫
Ω

(1 − q − xqx)
(
b2|u|2 + k̂|ux + w|2)dx + 2�

∫
Ω

(
g − â(v + z)

)
xq(ūx + w̄)dx

− 2�
∫
Ω

ibū(xqf )x dx − 2�
∫
Ω

ibv w̄xq dx. (22)

Thanks to the Cauchy–Schwarz and Poincaré inequalities, the first and the third equations in (20) as well as (19), it follows 
from (22):

b2|u|22 + k̂|ux + w|22 ≤ C0

∫
ωε

(
b2|u|2 + |ux + w|2)dx + C0

(|g|2|ux + w|2 + ∣∣√a(v + z)
∣∣
2|ux + w|2

+ |v|2| fx|2 + | fx|22 + |v|2|hx|2
) + 2�

∫
Ω

v z̄xq dx

≤ C0

∫
ωε

(
b2|u|2 + |ux + w|2)dx + C0

(‖U‖H‖Z‖H + ‖U‖
1
2
H‖Z‖

3
2
H + ‖U‖2

H
) + 2�

∫
Ω

v z̄xq dx.

(23)

Multiplying the fourth equation in (20) by 2xq(σ̂ w̄x − ǩū), using the third equation in (20), taking the real part, and 
integrating by parts over Ω , one obtains:

σ̂b2|w|22 + σ̂ 2|wx|22 = σ̂

∫
Ω

(1 − q − xqx)
(
b2|w|2 + σ̂ |wx|2

)
dx + 2�

∫
Ω

(
l − ǎ(v + z)

)
xq(σ̂ w̄x − ǩū)dx

− 2σ̂�
∫
Ω

ibw̄(xqh)x dx + 2ǩ�
∫
Ω

ibzūxq dx + 2ǩ2�
∫
Ω

(ux + w)ūxq dx

− 2ǩσ̂�
∫
Ω

(
w̄x wxq − wxū(xq)x

)
dx. (24)

Invoking the Cauchy–Schwarz inequality as well as first and third equations in (20) once more, we derive from (24), and for 
every nonzero b:

σ̂b2|w|22 + σ̂ 2|wx|22 ≤ C0

∫
ωε

(
b2|w|2 + |wx|2

)
dx + C0

(‖U‖H‖Z‖H + ‖U‖
1
2
H‖Z‖

3
2
H + ‖U‖2

H
) + b2

2

(
ǩ|u|22 + σ̂ |w|22

)

+ C0

b2

(|ux + w|22 + |wx|22
) − 2ǩ�

∫
Ω

zv̄xq dx. (25)

Multiplying (23) by ǩ, adding the result to (25), and choosing b with large enough absolute value, we find:

ǩb2|u|22 + ǩk̂|ux + w|22 + σ̂b2|w|22 + σ̂ 2|wx|22 ≤ C0

∫
ωε

(
b2(|u|2 + |w|2) + |ux + w|2 + |wx|2

)
dx

+ C0
(‖U‖H‖Z‖H + ‖U‖

1
2
H‖Z‖

3
2
H + ‖U‖2

H
)
. (26)

At this stage, we note that it remains to absorb the first term in the right-hand side of (26). First, we are going to absorb 
the terms involving ux and wx . For this purpose, we now introduce another cut-off function; let η ∈ C2([0, L]) with η ≡ 1
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on ωε , and η ≡ 0 on [0, l1]. Multiplying the second equation in (20) by η2ū, the fourth equation by η2 w̄ , and proceeding as 
above, one derives:

C0

∫
ωε

(|ux + w|2 + |wx|2
)

dx ≤ C0b2
∫
Ω

η2(|u|2 + |w|2) dx + C0

b2

(
k̂ǩ|ux + w|22 + σ̂ 2|wx|22

)

+ b2

2

(
ǩ|u|22 + σ̂ |w|22

) + C0
(‖U‖H‖Z‖H + ‖U‖

1
2
H‖Z‖

3
2
H + ‖U‖2

H
)
, (27)

where C0 in the left hand side is the same as in (26). Choosing b with large enough |b|, and combining (26) and (27), we 
find:

ǩb2|u|22 + ǩk̂|ux + w|22 + σ̂b2|w|22 + σ̂ 2|wx|22
≤ C0b2

∫
Ω

η2(|u|2 + |w|2)dx + C0
(‖U‖H‖Z‖H + ‖U‖

1
2
H‖Z‖

3
2
H + ‖U‖2

H
)

≤ C0b2
∫
Ω

η2|u + w|2 dx − 2C0b2�
∫
Ω

η2uw̄ dx + C0
(‖U‖H‖Z‖H + ‖U‖

1
2
H‖Z‖

3
2
H + ‖U‖2

H
)
. (28)

Now, it remains to dispose of the term involving the product uw̄ . To this end, multiply the second equation in (20) by 
σ̂ η2 w̄ and the fourth equation by k̂η2ū, integrate by parts over Ω , then subtract the fourth equation from the second to 
get, (setting ĝ = g − â(v + z) and l̂ = l − ǎ(v + z))

−b2(σ̂ − k̂)�
∫
Ω

η2uw̄ dx = σ̂�
∫
Ω

(
(ĝ + ibf )η2 − 2k̂ηxη(ux + w)

)
w̄ dx

− k̂�
∫
Ω

((
l̂ + ibh − ǩ(ux + w)

)
η2ū − 2σ̂ ηxηwxū + σ̂ w̄x w

)
dx. (29)

At this stage, we note that when k̂ = σ̂ , one can easily estimate the left-hand side of (29) as above, so that reporting the 
resulting estimate in (28), one finds:

ǩb2|u|22 + ǩk̂|ux + w|22 + σ̂b2|w|22 + σ̂ 2|wx|22 ≤ C0
(‖U‖H‖Z‖H + ‖U‖

1
2
H‖Z‖

3
2
H + ‖U‖2

H
)
, (30)

from which one easily derives (17) for all b with |b| > b0 for some large enough b0. For |b| ≤ b0, one invokes the continuity 
of the resolvent. This completes the proof in the case of different wave speeds. We now turn to the case of equal wave 
speeds: k̂ = σ̂ , which is the most interesting one because the identity (29), which is critical in the case of different wave 
speeds, breaks down (we are no longer able to estimate the left-hand side of (29)), and another approach is needed. For 
this purpose, we note that multiplying the second equation in (20) by η2 w̄ , and integrating by parts over Ω , one obtains, 
after some algebra

−b2�
∫
Ω

η2uw̄ dx = −k̂�
∫
Ω

η2ux w̄x dx − k̂�
∫
Ω

(
η2 wx + 2ηxη(ux + w)

)
w̄ dx + �

∫
Ω

(ĝ + ibf )η2 w̄ dx. (31)

Here, we draw the reader’s attention to the fact that a careful examination of (31) shows that estimating the term involving 
the product uw̄ in (28) amounts to estimating the term involving the product ux w̄x in (31). Now, set ϕ = u + w , then 
ϕ ∈ H2(Ω) ∩ H1

0(Ω) and satisfies the equation (keep in mind that k̂ = σ̂ )

−b2ϕ − k̂ϕxx = ĝ + l̂ + ib( f + h) + k̂wx − ǩ(ux + w). (32)
Multiplying (32) by η2ϕ̄ , integrating by parts over Ω , and using (21) as well as the Cauchy–Schwarz and Poincaré inequali-
ties, one finds:∫

Ω

η2|ϕx|2 dx = b2
∫
Ω

η2|ϕ|2 dx + �
∫
Ω

{
ĝ + l̂ + ib( f + h) + k̂wx − ǩ(ux + w)

}
η2ϕ̄ dx

≤ b2|ϕ|22 + C0
(|g + l|22 + |√a(v + z)|22 + b2|ϕ|22 + | fx + hx|22 + (|wx|2 + |ux + w|2

)|ϕ|2
)

≤ C0
(‖U‖H‖Z‖H + ‖U‖2

H + ‖U‖
1
2
H‖Z‖

3
2
H

)
. (33)

Noting that k̂|ϕx(L)|2 = k̂η4(L)|ϕx(L)|2 = 2k̂� 
∫
Ω

η2ϕ̄x(η
2ϕxx + 2ηxηϕx) dx, and using (32), integration by parts, the Cauchy–

Schwarz inequality as well as (21) and (33), we derive:∣∣ϕx(L)
∣∣2 ≤ C0

(‖U‖H‖Z‖H + ‖U‖
1
2
H‖Z‖

3
2
H + ‖U‖2

H + ‖U‖
1
4
H‖Z‖

7
4
H

)
. (34)

Similarly, one checks that∣∣wx(L)
∣∣2 ≤ C0

(‖U‖2 + ‖Z‖2 )
. (35)
H H



L. Tebou / C. R. Acad. Sci. Paris, Ser. I 353 (2015) 247–253 253
Multiplying (32) by η2 w̄x , integrating by parts over Ω , and using the Cauchy–Schwarz inequality as well as (21) and 
(33)–(35) yield:

k̂

∫
Ω

η2|wx|2 dx − ǩ�
∫
Ω

η2ux w̄x dx = −�
∫
Ω

(
η2hx + 2ηxη(ibw̄ + h̄)

)
ibϕ dx − k̂�ϕx(L)wx(L)

+ �
∫
Ω

η2ϕx
(
ǩ(ūx + w̄) − ¯̂l)dx − �

∫
Ω

η2(ĝ + l̂ − ǩw)w̄x − ib
(
η2( f + h)

)
x w̄ dx

≤ C0
(‖U‖H‖Z‖H + ‖U‖

1
2
H‖Z‖

3
2
H + ‖U‖2

H + ‖U‖
1
4
H‖Z‖

7
4
H + ‖U‖

1
8
H‖Z‖

15
8
H

) + C0|w|22. (36)

On the other hand, thanks to (33), one has the following estimate∫
Ω

η2|wx|2 dx + �
∫
Ω

η2ux w̄x dx = �
∫
Ω

η2ϕx w̄x dx ≤ C0
(‖U‖H‖Z‖H + ‖U‖

1
2
H‖Z‖

3
2
H + ‖U‖

1
4
H‖Z‖

7
4
H

)
. (37)

It now follows from (36) and (37)∣∣∣∣�
∫
Ω

η2ux w̄x dx

∣∣∣∣ ≤ C0
(‖U‖H‖Z‖H + ‖U‖

1
2
H‖Z‖

3
2
H + ‖U‖2

H + ‖U‖
1
4
H‖Z‖

7
4
H + ‖U‖

1
8
H‖Z‖

15
8
H

) + C0|w|22. (38)

Thanks to the Cauchy–Schwarz and Young inequalities, one derives from (31):

b2
∣∣∣∣�

∫
Ω

η2uw̄ dx

∣∣∣∣ ≤ k̂

∣∣∣∣�
∫
Ω

η2ux w̄x dx

∣∣∣∣ + C0

b2

(|ux + w|22 + |wx|22
) + σ̂b2

2
|w|22

+ C0
(‖U‖H‖Z‖H + ‖U‖

1
2
H‖Z‖

3
2
H + ‖U‖2

H
)
. (39)

Combining (38)–(39), reporting the result in (28), we get for large enough |b|:
ǩb2|u|22 + ǩk̂|ux + w|22 + σ̂b2|w|22 + σ̂ 2|wx|22

≤ C0
(‖U‖H‖Z‖H + ‖U‖

1
2
H‖Z‖

3
2
H + ‖U‖2

H + ‖U‖
1
4
H‖Z‖

7
4
H + ‖U‖

1
8
H‖Z‖

15
8
H

)
, (40)

from which one derives (17) for all b with |b| > b1 for some large enough b1. For |b| ≤ b1, one invokes the continuity of the 
resolvent. This completes the proof in the case of equal wave speeds and that of the theorem. �
Acknowledgements

The author thanks the referee for the careful reading of the note, the valuable comments provided and the typos de-
tected; these have been very helpful in the final presentation of the article.

References

[1] F. Alabau-Boussouira, Asymptotic behavior for Timoshenko beams subject to a single nonlinear feedback control, Nonlinear Differ. Equ. Appl. 14 (2007) 
643–669.

[2] F. Ammar-Khodja, A. Benabdallah, J.E. Muñoz Rivera, R. Racke, Energy decay for Timoshenko systems of memory type, J. Differ. Equ. 194 (1) (2003) 
82–115.

[3] F.D. Araruna, P. Braz, E. Silva, E. Zuazua, Asymptotic limits and stabilization for the 1D nonlinear Mindlin–Timoshenko system, J. Syst. Sci. Complex. 
23 (3) (2010) 414–430.

[4] M. Bassam, D. Mercier, S. Nicaise, A. Wehbe, Stabilisation frontière indirecte du système de Timoshenko, C. R. Acad. Sci. Paris, Ser. I 349 (7–8) (2011) 
379–384.

[5] C.D. Benchimol, A note on weak stabilizability of contraction semigroups, SIAM J. Control Optim. 16 (1978) 373–379.
[6] M.M. Cavalcanti, V.N. Domingos Cavalcanti, F.A. Falcão Nascimento, I. Lasiecka, J.H. Rodrigues, Uniform decay rates for the energy of Timoshenko system 

with the arbitrary speeds of propagation and localized nonlinear damping, Z. Angew. Math. Phys. 65 (6) (2014) 1189–1206.
[7] H.D. Fernández Sare, R. Racke, On the stability of damped Timoshenko systems: Cattaneo versus Fourier law, Arch. Ration. Mech. Anal. 194 (1) (2009) 

221–251.
[8] A. Haraux, Une remarque sur la stabilisation de certains systèmes du deuxième ordre en temps, Port. Math. 46 (1989) 245–258.
[9] A. Haraux, On a completion problem in the theory of distributed control of wave equations. Nonlinear partial differential equations and their ap-

plications, in: Collège de France Seminar, vol. X, Paris, 1987–1988, in: Pitman Res. Notes Math. Ser., vol. 220, Longman Sci. Tech., Harlow, UK, 1991, 
pp. 241–271.

[10] F.L. Huang, Characteristic conditions for exponential stability of linear dynamical systems in Hilbert spaces, Ann. Differ. Equ. 1 (1985) 43–56.
[11] J.U. Kim, Y. Renardy, Boundary control of the Timoshenko beam, SIAM J. Control Optim. 25 (1987) 1417–1429.
[12] Z. Liu, B. Rao, Energy decay rate of the thermoelastic Bresse system, Z. Angew. Math. Phys. 60 (1) (2009) 54–69.
[13] J.E. Muñoz Rivera, R. Racke, Timoshenko systems with indefinite damping, J. Math. Anal. Appl. 341 (2) (2008) 1068–1083.
[14] J. Prüss, On the spectrum of C0-semigroups, Trans. Amer. Math. Soc. 284 (1984) 847–857.
[15] M.L. Santos, D.S. Almeida Júnior, J.E. Muñoz Rivera, The stability number of the Timoshenko system with second sound, J. Differ. Equ. 253 (9) (2012) 

2715–2733.
[16] A. Soufyane, Stabilisation de la poutre de Timoshenko, C. R. Acad. Sci. Paris, Ser. I 328 (1999) 731–734.
[17] L. Tebou, Simultaneous observability and stabilization of some uncoupled wave equations, C. R. Acad. Sci. Paris, Ser. I 350 (2012) 57–62.
[18] A. Wehbe, W. Youssef, Stabilization of the uniform Timoshenko beam by one locally distributed feedback, Appl. Anal. 88 (2009) 1067–1078.

http://refhub.elsevier.com/S1631-073X(15)00027-8/bib616Cs1
http://refhub.elsevier.com/S1631-073X(15)00027-8/bib616Cs1
http://refhub.elsevier.com/S1631-073X(15)00027-8/bib61626D72s1
http://refhub.elsevier.com/S1631-073X(15)00027-8/bib61626D72s1
http://refhub.elsevier.com/S1631-073X(15)00027-8/bib61737As1
http://refhub.elsevier.com/S1631-073X(15)00027-8/bib61737As1
http://refhub.elsevier.com/S1631-073X(15)00027-8/bib626E77s1
http://refhub.elsevier.com/S1631-073X(15)00027-8/bib626E77s1
http://refhub.elsevier.com/S1631-073X(15)00027-8/bib62656Es1
http://refhub.elsevier.com/S1631-073X(15)00027-8/bib6363666C72s1
http://refhub.elsevier.com/S1631-073X(15)00027-8/bib6363666C72s1
http://refhub.elsevier.com/S1631-073X(15)00027-8/bib667372s1
http://refhub.elsevier.com/S1631-073X(15)00027-8/bib667372s1
http://refhub.elsevier.com/S1631-073X(15)00027-8/bib6875s1
http://refhub.elsevier.com/S1631-073X(15)00027-8/bib686Fs1
http://refhub.elsevier.com/S1631-073X(15)00027-8/bib686Fs1
http://refhub.elsevier.com/S1631-073X(15)00027-8/bib686Fs1
http://refhub.elsevier.com/S1631-073X(15)00027-8/bib6866s1
http://refhub.elsevier.com/S1631-073X(15)00027-8/bib6B72s1
http://refhub.elsevier.com/S1631-073X(15)00027-8/bib6C72s1
http://refhub.elsevier.com/S1631-073X(15)00027-8/bib6D7572s1
http://refhub.elsevier.com/S1631-073X(15)00027-8/bib7072s1
http://refhub.elsevier.com/S1631-073X(15)00027-8/bib73616Ds1
http://refhub.elsevier.com/S1631-073X(15)00027-8/bib73616Ds1
http://refhub.elsevier.com/S1631-073X(15)00027-8/bib736Fs1
http://refhub.elsevier.com/S1631-073X(15)00027-8/bib74656262s1
http://refhub.elsevier.com/S1631-073X(15)00027-8/bib7779s1

	A localized nonstandard stabilizer for the Timoshenko beam
	1 Introduction and statement of the main results
	2 Ideas for proving Theorem 1.1
	3 Ideas for proving Theorem 1.2
	Acknowledgements
	References


